PAGE PERSONNELLE



Pr. BESSAIM AICHA بصايم عائشة
Faculté des Sciences et de la Technologie
Département Génie civil
Grade : Professeur
Numéro de Téléphone :0697362627
Adresse électronique institutionnel :a.bessaim@univ-mascara.dz
Adresse électronique personnel :bessaimaicha@yahoo.fr
Adresse postale :
29000
Laboratoire d’étude des structures et de mécanique des matériaux
Lien Google Scholar :https://scholar.google.com/BESSAIM_AICHA
Mots Clés de Recherche : Functionally Graded Materials (FGM); Beam; Plate; Nanocomposites; Nanostructures


Biographie

Parcours académique :

Received PhD from Sidi Bel Abbes University in 2014. I am Professor in Civil Engineering at University Mustapha Stambouli of Mascara, ALGERIA. My scientific researches focus on structural analysis, mechanical, composite and functionally graded materials (FGM), beam and plates theories, nanocomposites and nanostructures.



Axes et thèmes de recherche

  • A novel hyperbolic shear deformation theory for the mechanical buckling analysis of advanced composite plates resting on elastic foundations




  • Projets de recherche

  • Description: Ce travail de recherche a pour but d'étudier l'analyse vibratoire des structures micro/nanostructures en matériaux composites avancés.
  • Code de projet: A01L02UN290120180004
  • Agrées le : en 2018-01-01


  • Publications

  • Thermo-mechanical vibration analysis of non-local refined trigonometric shear deformable FG beams
  • La revue : International Journal of Hydromechatronics
    Domaine : Civil Engineering
    Mots Clés : FG nanobeam, vibration, thermal loading, shear deformation beam theory
    Auteur : Mouffoki Abderrahmane, Aicha Bessaim, Houari Mohammed Sid Ahmed, Abdelhakim Kaci, Tounsi Abdelouahed, El Abbas Adda Bedia
    Issn : 2515-0464 Eissn : 2515-0472 vol : 2, Num : 1, pp : 54-62
  • Date de publication : 2019-04-01
  • Résume :
    In this article, thermo vibration analysis of functionally graded (FG) nanobeams subjected to linear and uniform temperature distribution is studied. The structure is modelled by new efficient shear beam theory considering the effect of shear deformation without shear correction factor. The mentioned theory satisfies the zero boundary traction conditions on the beam surfaces and can be used for transverse shear strains trigonometric distribution. Material properties of the nanostructure are assumed temperature-dependent and FG based on the distribution of power law. The influence of size scale is captured utilising Eringen theory of non-local elasticity. Based on the present theory, the motion equations are obtained using principle of Hamilton. It is found that the applied theory is very simple and leads to accurate results for thermo vibration analysis of FG nanobeams.



  • Communications

  • Lieu de communication : Université de Mascara
  • date debut : 2019-06-11
  • date fin : 2019-06-11


  • © Site développé par webmaster | Contact: houari.y@univ-mascara.dz | Tous doits réservés