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Abstract. We propose a novel convolutional neural network (CNN) ar-
chitecture for speaker verification, designed to effectively capture sequen-
tial and local interactions within input speech mel-filterbanks. Our ap-
proach integrates a series of multi-scale K-neighboring residual convolu-
tional (MKRC) blocks, which enable each sub-feature to integrate con-
textual information from its local neighbors. This architecture facilitates
the generation of speaker embeddings with an enhanced ability to differ-
entiate between similar speakers. At first, Mel-filterbanks are extracted
from each input speech, which is fed to the proposed model for speaker
embedding generation. Euclidean distance is calculated between pair-
wise embeddings for performance evaluation. The proposed model has
been compared with state-of-the-art methods using VoxCeleb1 dataset.
Experimental results show that our model achives promising results in
terms of Equal Error Rate (EER) and minimum Detection Cost Function
(minDCF).

Keywords: Speaker Verification - Multi-scale K-Neighbor - Speaker Em-
bedding.

1 Introduction

Speaker verification (SV) is the process of verifying whether two utterances be-
long to the same speaker or not. It analyzes pitch, tone, speaking style, and
pronunciation, among other aspects of speech. This technology is applied in
many different fields, including support of forensic investigations, access control
mechanisms, validation of voice-activated devices, and security system enhance-
ment. Speaker verification authenticates a claimed identity (1:1 match), whereas
speaker identification [17] aims to recognize an unknown speaker from a known
group (a 1:N match).

Due to significant advancements in speech signal processing and deep learn-
ing, speaker verification has undergone substantial transformations over the
years. Most of the conventional speaker recognition methods were based on sta-
tistical models and binary hypothesis tests, such as Gaussian Mixture Models
(GMMs)[16] and Hidden Markov Models (HMMs)[7]. With the advancement
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of deep learning, more advanced architectures have emerged such as Time-
Delay Neural Networks (TDNNs)[20], Residual Networks (ResNets)[6], ECAPA-
TDNN][5] and Dense-Residual Networks. Such architectures can deeply represent
the dissimilarities of time—frequency properties among different speakers, thereby
enhancing the accuracy and robustness of speaker verification systems.

In [13], authors proposed the fusion of DenseNets and ResNets techniques to
improve embedding learning . Their work consisted of building Dense-Residual
(DenseR) blocks by combining dense connections with residual learning to collect
complementing information without increasing model complexity compared to
stacking more layers. Especially in view of model complexity, these blocks (im-
plemented in sequential and parallel configurations) show better performance
than standalone ResNets[6] or DenseNets [20]. The success of Dense-Residual
networks emphasizes the possibilities of combining architectural strengths to
extract richer and more discriminative speaker embeddings [13].

However, such methods process the entire sequence as a whole, by extracting
temporal and spectral features at a single scale. This process can miss impor-
tant local spatial relationships and multi-scale features within the audio signal,
which may contain useful and relevant speaker-specific information. Inspired
from the work presented in [12], we address a novel architecture using multi-
scale k-neighboring residual convolutional (MKRC) blocks designed to process
the input speech signal as a multi-scale feature. This is achieved by dividing the
sequence into non-overlapping sub-features allowing each one of them to obtain
information from its neighboring sub-features. This method enables our model
to acquire spatially correlated information at multi resolution levels, which leads
to a more accurate speaker verification.

Our study examines two key aspects of the MKRC architecture’s perfor-
mance: first, how different k-neighboring scales (k-values) affect feature learn-
ing, and second, how the number of MKRC blocks impacts the model’s capacity
to capture both local and spatial dependencies. Section 2 provides an overview
of the proposed model design and the MKRC block architecture. Experimen-
tal results show that our model acts robusltly compared to the state-of-the-art
baseline methods in terms of EER and minDCF [11].

2 Method

Our model is proposed to learn speaker embeddings that represent the unique
vocal characteristics of different speakers. The overall architecture is composed of
four main stages, namely the initial convolutional feature extractor, the stack of
Multi-scale K-neighboring residual convolutional blocks, the attentive statistical
pooling layer and the feed-forward network for embedding projection, as clearly
illustrated in figure 1. We discuss the details and configurations of the proposed
model in the following subsections.
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Fig. 1: The overall architecture of the proposed speaker verification model

2.1 Initial Convolutional Layers

The input Mel-filterbanks (shape: 112 x T') first pass through two 1D dilated con-
volutional layers, which serve as the initial feature extractors for the subsequent
MKRC blocks, followed by a batch normalization layer and a ReLU activation
function. We used dilated convolution over standard convolution because di-
lated convolution can capture longer time-frequency contextual information by
expanding the receptive field without increasing kernel size or computational
cost[12].

For 1D dilated convolution applied to a 2D input tensor X € R“*T (Where C
is the number of channels and T is the number of frames), the output is defined
by:

Out(k,q) = Z Z In(e,t) * Weight(k,c, s) (1)

¢ t+dxs=q

Where d is a dilation rate, s is the filter width and & =1, ..., K where K is the
total number of filters [3].
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2.2 Multi-Scale K-Neighboring Residual Blocks

Figure 2 illustrates the workflow of the proposed MKRC block. The main contri-
bution of the proposed work consists of using a stack of Multi-Scale K-Neighboring
Residual Convolutional (MKRC) blocks. At first, the MKRC blocks divide the
input feature map into non-overlapping sub-features along the frequency axis.
This division allows the model to focus on smaller areas of the speech signal,
which represent some different aspects of the audio signal, at multiple scales. In
turn, each sub-feature is processed with a distinct convolutional kernel, allow-
ing the model to extract diverse patterns across several frequency regions. The
multi-scale structures can learn more detailed local spatial information compared
to single-scale structures [8].

To improve feature learning, each sub-feature learns from its K neighboring
sub-features using a sequential dependency mechanism. The model processes
each sub-feature sequentially while allowing it to recover information from its
neighbors. This process helps the model to capture both local spatial relation-
ships (within individual sub-features) and global context (across neighboring
sub-features), both of which are crucial for distinguishing speaker-specific char-
acteristics, and learning dependencies between these sub-features. In fact, both
global context and local spatial dependencies lead to better discrimination be-
tween different speakers.

The output of the dilated convolution for the sub-feature S; is expressed as:

K
S = Conv(S; + > Si) (2)
k=1
K = 2 is taken as an example, as shown in the figure 2. In equation 2, §i_k
represents the output of sub-feature S;_j after an element-wise summation is
applied with its neighboring sub-features. The summation of these neighboring
sub-features allows the model to combine both local and global information,
which is helpful for a robust speaker embedding.

Following this aggregation step, the processed sub-features are concatenated,
and the output feature is element-wise summed with the input feature map. This
summation is known as a residual connection (also known as skip-connection),
which is a technique that makes the training of deep learning models easier,
especially in deeper networks [6].

To enhance the model’s representational capacity, we implemented a sequence
of multiple MKRC blocks. This sequence allows the network to capture more
features at many levels of detail. Additionally, we can easily adjust the number
of stacked blocks based on the dataset availability.

We can also adjust the number k of neighbors that individually interact with
each sub-feature. This flexibility allows us to fine-tune the model’s ability to bal-
ance between localization (by limiting the number of neighbors) and contextual
learning (by considering more neighbors).

In the proposed approach, the model is designed to capture the most rel-
evant characteristics of speakers voices. By combining the multi-scale feature
processing and the K-neighbor mechanism, the MKRC architecture improves



Multi-Scale K-Neighboring Residual Network 5

the discriminative power of the speaker embeddings, contributing to more accu-
rate and robust speaker verification systems.

The impact of different k values on the model performance and the number
of stacked MKRC blocks, in terms of both EER and minDCF, will be evaluated

in later sections.
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Fig. 2: Workflow of the MKRC block

2.3 Attentive Statistical Pooling Layer

The attentive statistic pooling (Att-SP)[15] layer dynamically aggregates tempo-
ral information by computing weighted mean and standard deviation across the
time axis. Unlike uniform temporal averaging which treats all frames as equal,
Att-SP learns to emphasize speaker-discriminative frames (such as stable vowels
or salient consonants) that are more informative for speaker verification, through
an attention mechanism. For each time step t, the attention weight a; can be
defined as:

ar = softmax(W * hy +b) (3)
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where h; is the frame-level feature, and W, b are the model’s learnable parame-
ters.

2.4 Fully Connected Embedding Layer

To extract speaker embedding vectors, we implemented two dense layers that
transform the pooled vectors into lower-dimensional space. Batch normalization
is applied after each dense layer to improve model’s convergence. The first layer
processes the pooled vectors to extract more features, and the final layer projects
them to the embedding space.

During the training process, The embeddings are optimized using an appro-
priate loss function (AAM-softmax) [18] which adds an angular margin between
speaker classes. This procedure enables the model to enhance inter-speaker vari-
ability while reducing intra-speaker differences in the embedding space.

For evaluation scoring, pairwise embeddings similarity scores are computed
using the Euclidean distance [4]. Given two speaker embeddings = and y ex-
tracted from two utterances respectively, their dissimilarity score d(z,y) is cal-
culated as:

d(z,y) = [z —yl2 =

Where ||.||2 is the L2 norm, also known as Euclidean norm and n is the dimension
of the embedding vector. This distance measure serves as our primary verification
score, where lower values indicate higher speaker similarity.

Noting that, the ability to capture local and global information is achieved by
enabling the interaction between neighboring sub-features across multiple scales.
Unlike previously published techniques, where features are separately processed
[6] [20] [5], our model learns relationships between fine-grained spectral details
and broader vocal traits through proposed K-neighboring information exchange.
This leads the model to generate robust and discriminative speaker embeddings.

3 Experimental Setup

3.1 Dataset

The used dataset is VoxCeleb1[14] dataset. For the training set, VoxCelebl con-
tains over 100,000 utterances from 1,211 speakers, collected from YouTube videos
under real-world, unconstrained conditions. The dataset is gender balanced, with
55% of male speakers. To evaluate our model, we used VoxCelebl test set, which
contains over 6,000 utterances from 40 speakers, with no overlapping identity
between training and test sets.

3.2 Input features

For our speaker verification task, Mel-filterbanks were extracted from each ut-
terance and used as input features to the MKRC network.
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The procedure of extracting mel-filterbanks is described as follows:

First, we apply a pre-emphasis filter on each speech signal with a coefficient
set to 0.97. Next, we divide the signal into overlapping frames with a 25ms frame
length and a 10ms frame shift. A custom window function named Povey [2] is
applied on each overlapped frame.

Later on, The Short-Time Fourier Transform (STFT) process is performed
on each windowed frame to obtain the power spectrum of the signal. To produce
mel-filterbanks, a set of 112 triangular filters (111 Mel filters and an energy
dimension) was applied on the resulted power spectrum, spaced on the Mel scale.
This scale provides a representation that conforms better to human auditory
system on the frequency resolution. The transformation of frequency f in Hz to
the mel scale m can be described in the equation (5):

_ f
m = 2595 * log1o(1 + 700) (5)

The triangular filterbanks smooth the energy distribution across close fre-
quency bands, which results of a unique, information-rich design that is suitable
as an input for our speaker verification system. The mel-filterbanks can be visu-
alized in figure 3.

The resulted filterbanks are of dimension 112 frequency bands x 300 time
frames, which will be considered as inputs of the proposed model.

Attentive Statistical Pooling (ASP)[15] is used to generate utterance-level
embeddings, without any data augmentation.

ID10045
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Fig. 3: Mel-filterbank features
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3.3 Training settings

The proposed model was implemented using the PyTorch 2.5.1 framework|1] and
trained on the ROCm 6.2 platform running Ubuntu 22.04 LTS [10], leveraging
AMD’s HIP backend for optimized GPU acceleration.

For both training and testing, a fixed 3-second time segment is randomly
extracted from each utterance. The model is trained using Additive Margin Soft-
max (AAM-softmax) loss using Adam optimizer [21]. Parameters of the proposed
model are presented in table 1.

Table 1: Settings of the proposed model.
Type Details
Input features Number of frames : 300
Number of frequency bins : 112
Initial convolutional layers|Kernel size : 5
Output channels : 512
Dilation rate : 1,2
Padding rate : 2,4
MKRC Subfeature dimension : 64
Kernel size : 5
Padding and dilation rate : 2
Number of blocks : 3
Output channels in each block : 512

ASP Number of channels : 128
Output channels : 1024

FFNN Neurons of first dense layer : 256
Embedding dimension : 512

AAM Sofmax Margin : 0.3
Scaling factor : 30

Optimizer Learning rate : 0.0005

Degradation rate : 25% every 2 epochs
Weight decay : 5x107°

System performance is evaluated via Equal Error Rate (EER) and minimum
Detection Cost Function (minDCF). The detailed definitions of both EER and
minDCF are referred to [11], with Pigrger = 0.05.

4 Results

4.1 Impact of K-Neighboring Scales number

In this subsection, we evaluate how the number of neighboring scales (K) affects
verification performance using equal error rate (EER) and minimum detection
cost (minDCF). For computational efficiency, batch size will be set to 512. The
lowest scores are obtained at K=4 as shown in Table 2, this result indicatesthat
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increasing K significantly improve the model performances. This 2.1% EER re-
duction from K=2 to K=4 indicates that the MKRC blocks are able to capture
more global contextual information, resulting in more discriminative speaker
embeddings. Based on the results, we will use K=4 for later experiments.

Table 2: Impacts of the K-Neighboring Scales number on the performance of the
proposed model. The performance metrics are EER (in minDCF.

No. of scales|EER(%) MinDCF
2 8.8971 |0.49422
3 8.7858 |0.48107
4 8.7540 |0.47248

4.2 TImpact of MKRC block number

Let us now evaluate how the number of MKRC blocks (N) affects verification per-
formance using equal error rate (EER) and minimum detection cost (minDCF).
As shown in Table 3, increasing the MKRC block number from N=3 to N=8
results in progressive performance improvements, with the best results achieved
at N=8 (EER=8.66%, minDCF=0.469).However, at N=10, we can see a small
regression in EER (8.85%). This might indicate that the model is starting to
overfit the data. The 1.0% relative EER reduction from N=3 to N=8 indicates
that deeper architectures model speaker characteristics better. Taking into ac-
count these results, we set N=8 for the next experiment.

Table 3: Impacts of the MKRC blocks number on the performance of the pro-
posed model. The performance metrics are EER (in %) and minDCF.

No. of blocks|EER(%)|MinDCF
3 8.7540 0.47248
4 8.7723 0.46262
6 8.6903 0.47163
8 8.6638 |0.46925
10 8.8494 0.48224

4.3 Comparison to different methods

For fair comparison against existing methods, a batch size of 64 was used in this
experiment. Table 4 compares our model performance with state-of-the-art meth-
ods such as RawNet3, ResNet-SE, TDNN and ECAPA-TDNN [9] [6] [20] [5] [19].
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As shown in Table 4, our model achieved EER=7.87% and minDCF=0.447. Re-
sults demonstrate that our model slightly outperforms RawNet3 (EER=8.71%),
ResNet-SE (EER=11.52%) and conventional TDNN (8.51% EER), with nar-
rowing the gap with ECAPA-TDNN (6.44% EER). MKRC shows a 7.5% im-
provement in minDCF compared to standard TDNN (0.447 vs 0.462), indicating
improved reliability for real-world applications. Although ECAPA-TDNN is the
best performer, our method exhibits a competitive performances compared to
baseline speaker verification methods, validating MKRC’s ability to learn dis-
criminative speaker representations based on its unique multi-scale approach.

The achieved results validate MKRC’s ability to learn discriminative speaker
representations based on its unique k-neighboring approach. By integrating the
combination of both local and global information, the model is able to gener-
ate robust speaker embeddings that are very useful in the context of speaker
verification tasks.

Table 4: Scores of EER and minDCF obtained by our method compared to
different methods.

Methods EER(%)|MinDCF
RawNet3 8.71 0.4882
ResNet-SE 11.52  ]0.5675
TDNN 8.51 0.4624
ECAPA-TDNN|6.44 0.3784
MKRC 7.8685 |0.44745

4.4 Conclusion

This work introduces a new architecture for speaker verification that processes
input features in a multi-resolution manner, where each sub-feature dynamically
incorporates information from its surrounding elements under a multi-scale per-
spective. Our model gathers both fine-grained local dependencies and global
speaker characteristics by considering spectral and temporal patterns as hierar-
chical components. The main contribution lies in letting each sub-feature accu-
mulate context from its K-nearest neighbors.

Through detailed experiments, we found that expanding the number of neigh-
bouring scales (K) and MKRC blocks (N) consistently boosts performance. The
best results were obtained at K=4 and N=8 blocks, achieving an EER of 7.87%
and a minDCF of 0.447. Our model shows a competitive results compared to mul-
tiple state-of-the-art methods, including standard TDNN, RawNet3 and ResNet-
SE.
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