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Abstract. In recent years, wind turbine condition monitoring based on Supervisory Control and Data 
Acquisition (SCADA) systems has attracted considerable scientific research interest. Frequently reported 
challenges include the fact that most wind turbine SCADA parameters are highly dependent on the operating 
conditions, such as wind speed, wind direction, and LV Active Power, along with the control actions imposed 
on the wind turbine. Thus, strict and effective data quality control of the SCADA data is crucial. Besides that, 
intelligent anomaly detection for wind turbines using artificial intelligence techniques has been extensively 
researched and yielded significant results. Likewise, the usage of machine/deep learning techniques is widely 
spread and has been implemented in the wind industry in the last few years. The development of sophisticated 
deep learning now allows improvements in anomaly detection from historical data. In this paper, we present a 
wind speed anomaly detection approach using LSTM (Long Short-Term Memory), CNN (Convolutional 
Neural Network), and GRU (Gated Recurrent Unit) to detect the minimum and maximum values of wind 
speed. The approach applies the information in supervisory control and data acquisition systems of Aeolian 
wind speed. This comprehensive approach offers a promising avenue for the precise anomaly detection of 
Aeolian wind speed, providing practicians with a reliable tool for accurate diagnosis, critical for timely 
intervention. Real cases from a wind farm have confirmed the feasibility and advancement of the proposed 
Deep Learning models, while also discussing the effects of various applied parameters. 

Keywords: Wind Energy, Wind Turbine, Anomaly Detection, SCADA Dataset, Deep Learning, CNN, LSTM, 
GRU. 

1. Introduction  

In recent years, investments in green energy have yielded large growth in the energy sector both in terms of 
economy and research opportunities. With its renewable and clean characteristics, wind energy has demonstrated 
its competitiveness among all kinds of energies [1]. Besides that, wind energy is one of the most important 
renewable energy sources and has gained much attention due to the recent energy crisis. Moreover, many countries 
use wind turbines to produce electricity, considered a clean energy technology, and a friendly alternative to fossil 
fuels to minimize carbon footprints. Wind energy is possibly one of the game-changers in future decarbonization 
scenarios in Algeria. According to [2], renewable energy sources namely Wind Energy (WE) are projected to grow 
substantially in the coming decades and play major roles in achieving energy sustainability. Wind energy, or wind 
power, is created using a wind turbine, a device that channels the power of the wind to generate electricity. These 
contemporary marvels come in various sizes and forms, and each is made to collect the wind's kinetic energy 
effectively. Wind turbines have been widely deployed to convert wind energy into electricity. As a result, 
numerous cutting-edge data-driven technologies have begun to find applications in the wind farm life cycle, with 
the operation and maintenance cycle receiving special attention due to its high cost and complexity. According to 
[3], the condition monitoring of wind turbines is of increasing importance as the size and remote locations of wind 
turbines used nowadays make the technical availability of the turbine very crucial. For [4; 5], various types of 
condition monitoring sensors are installed in different wind turbine (WT) components, and their multi-dimensional 
state parameters, such as wind speed are recorded and saved by the WT supervisory control and data acquisition 
(SCADA) system. Moreover, the SCADA (Supervisory Control and Data Acquisition) system accumulates a large 
amount of data that contains the health conditions of the wind turbines. Many methods have been proposed to 
optimize wind farm power output control and predictive maintenance. In wind turbines, anomaly detection can be 
considered a good classification problem where the task is to label the incoming data as either healthy or unhealthy 



(due to anomalies). Anomaly detection is used in several areas, for example, in security areas to detect malicious 
behavior such as intrusion or fraud, and in industrial areas to detect anomalies occurring in manufacturing 
processes. Anomaly detection typically involves dataset classification by using Artificial intelligence models. 
Moreover, the world is experiencing considerable technological advances in the renewable energy sector thanks 
to Artificial Intelligence (AI) [6]. Deep learning (DL), considered the primary means to achieve AI, is to provides 
modelling rules to a computer system to gain information from data without explicit human programming [7]. 
Deep Learning is a machine learning paradigm based on deep neural networks that has shown great success in 
various applications over recent years. Deep learning techniques have demonstrated themselves as a prominent 
field of study within a data-driven framework over the last decade by addressing numerous challenging problems 
in healthcare [24], sentiment analysis [5], opinion mining, malware detection [10], and other real-world 
applications. Moreover, DL has been increasingly used for data analyses and for gaining additional knowledge 
from data (e.g., Prediction and Detection of Anomalies) [8]. Various deep learning methods have been developed 
in the literature to predict wind turbines in recent decades. The deep learning method has been used in the field of 
renewable energy since it provides a feasible method for not only linear correlations but also nonlinear dynamic 
prediction and correlation processes. For example, an intelligent anomaly detection method based on deep learning 
networks has been receiving increasing attention. In other words, various AI solutions have been proposed to 
predict and detect turbine faults, assisting in diagnosis and allowing technicians to determine when to perform 
preventive maintenance. According to [9], large wind turbines have a higher failure rate compared to thermal and 
hydroelectric turbines due to the challenging external environment and complex operating conditions. According 
to [10], Deep ML solutions have become popular in different fields, and their application in wind turbines has 
obtained promising results.  
Combined with the characteristics of wind turbines’ SCADA data, this paper proposes deep learning techniques 
(CNN, LSTM, and GRU) for anomaly detection of wind turbines (Aeolian Wind Speed). For this study, previously 
unlabeled SCADA data from wind turbines was used to pre-train these deep learning models to extract implied 
features. As per our objective, we present CNN, LSTM, and GRU models for the prediction of minimum and 
maximum wind speed values, as well as the prediction of power output. In this way, we generate the best anomaly 
detection of wind speed by comparing the results of three models, namely LSTM (Long Short-Term Memory), 
CNN (Convolutional Neural Network), and GRU (Gated Recurrent Unit). Specifically, we set the following 
scientific goals: 

 Definition of minimum and maximum thresholds for anomaly detection (min_threshold, max_threshold); 
 Added an "Anomaly" column to indicate anomalies based on thresholds; 
 Displaying wind speed and generated power values for detected anomalies and non-anomalous events; 
 Calculation of detected anomalies and non-anomalies number; 
 To design and develop deep learning based anomaly detection models for wind speed and generated 

power values utilizing past datasets; 
 To evaluate and examine the prediction capabilities of the proposed deep learning models (CNN, LSTM, 

and GRU), performance assessment metrics such as Mean-Square Error (MSE), Root Mean-Square Error 
(RMSE), Mean Absolute Error (MAE), Pearson Correlation (PC), and Coefficient of determination (R2) 
are used to compare the performance of the deep learning models.; 

 This study compares the proposed model (CNN, LSTM, and GRU) with state-of-the-art to show how our 
models are more efficient than existing studies. 

The remainder of the paper is organized as follows: Related Work section 2 presents the related works. The 
architecture section describes the architecture of the proposed approach. Case Study section describes the case 
study and results of the proposed approach. The conclusion section concludes our paper. 
 

2. Related Work 

The industry 4.0 has created a paradigm shift in how industrial equipment could be monitored and diagnosed with 
the help of emerging technologies such as artificial intelligence (AI) techniques. AI-driven troubleshooting tools 
play an important role in high-efficacy diagnosis and monitoring processes, especially for systems consisting of 
several components including wind turbines (WTs).  A lot of researchers have conducted studies, new frameworks, 
and designs regarding anomaly detection of aeolian wind speed using various algorithms, methodologies, 
techniques, and procedures, which will be considered as part of the theoretical framework of this research, enabling 
afterward the construction of the conceptual framework of the study. Cui et al. [11] presented an anomaly detection 
approach using machine learning to achieve condition monitoring for wind turbines. The approach applies the 
information in supervisory control and data acquisition systems. The proposed approach has been tested with the 
data experience of a 2MW wind turbine in Sweden. The result demonstrates that the approach can detect possible 



anomalies before the failure occurrence. In the study done by [12], proposes a novel Deep Small-World Neural 
Network (DSWNN) based on unsupervised learning to detect the early failures of wind turbines. The DSWNN 
model is a combination of a deep auto-encoder network and a small-world neural network, which are more accurate 
in simulating the dynamic behavior of wind turbines by working on a closer level of mimicking the working 
process of a natural brain. In the study done by [13], an anomaly detection method for gearbox oil temperature 
using SCADA data is proposed based on Sparse Bayesian Learning (SBL) and hypothesis testing (HT). Then, the 
anomaly can be detected by observing whether the actual temperature value falls into the estimated interval at an 
enough high possibility, which can be checked by using HT. Besides that, Nie et al. [14] an auto-encoder-based 
solution named denoising stacked feature enhanced auto-encoder with dynamic feature enhanced factor for fault 
diagnosis of wind turbines. In their approach, feature enhancement relies on a competition and enhancement policy 
that prioritizes neurons with higher activation values, suppressing the neurons with lower ones. This approach 
aims to increase the neurons' specialization, leading the DAE to extract discriminative features. Roelofs et al. [15] 
introduced a novel method: ARCANA. The authors used ARCANA to identify the possible root causes of 
anomalies detected by an autoencoder. It describes the reconstruction process as an optimization problem that aims 
to remove anomalous properties from an anomaly considerably. The proposed method is applied to an open data 
set of wind turbine sensor data, where an artificial error was added to the wind speed sensor measurements to 
acquire a controlled test environment. Hoffmann et al. [16] presented a Semi-Supervised Deep Learning approach 
for anomaly detection of Wind Turbine generators based on vibration signals. The proposed solution is integrated 
into an IoT Platform as a real-time Workflow. The Workflow is responsible for the whole detection process when 
a new sample is inserted in the IoT Platform, performing data gathering, preprocessing, feature extraction, and 
classification. In another study by [17], a new system named LSTM-based VAE-WGAN was established to 
address the challenge of small and noisy wind turbine datasets. Moreover, the proposed LSTM-VAE-WGAN 
system with the two-stage adversarial semi-supervised training approach achieved the best performance with the 
earliest alarm point and highest 𝐹1-score. According to the authors, the similarity between the model-fit 
distribution and true distribution was quantified using the Wasserstein distance, enabling complex high-
dimensional data distributions to be learned. Additionally, an adaptive identification method of abnormal data 
(AIMAD) in the wind and solar power stations is proposed by [18], including the bidirectional one-sided quartile 
and double DBSCAN method to deal with unevenly distributed abnormal data. The operation data of 30 wind 
farms and 8 solar plants in China are taken as examples to verify the effectiveness and superiority of the proposed 
method. Du et al. [19] proposed a denoising autoencoder (DAE) based anomaly detector and performed anomaly 
root cause analysis using sparse estimation. For anomaly detection, a deep denoising autoencoder is learned with 
normal history data, with enhanced robustness compared to the conventional autoencoder. In another study by 
[20], is to explore the preprocessing of normal data sets using the WPT HPF-PCA method and the detection of 
outliers using the LSTM-AE model. The key idea was to transform the data using WPT and HPF and perform 
dimensionality reduction using PCA to extract the characteristics of the data.  In the experiments, the authors 
trained and evaluated the model using different normal datasets with sequential step preprocessing, and evaluated 
the model's performance by comparing the reconstruction loss with the actual outliers. 
In the artificial intelligence studies, Ding et al. [21] proposed a remote real-time monitoring anomaly recognition 
method for power system equipment based on artificial intelligence technology. This article used four wind 
turbines as experimental objects and collected data on their parameters such as speed, temperature, current, and 
voltage. After data collection, preprocessing and feature extraction were performed on the data, and a model based 
on CNN was selected for anomaly detection. Amini et al. [22] evaluated, compared, and contrasted eight different 
artificial neural networks (ANNs) models for the diagnosis of WTs that predict the machinery’s system failure 
based on internal components’ sensor signals and generation temperature. The authors developed a system that 
predicted the output of the WT’s generator temperature with 2 months in advance measurement prediction. The 
following Table. 1 gives a summary of all literature reviews. 
 

Table 1. Literature review of SCADA data of wind turbines by various authors. 
Authors and Paper Model Dataset  
Cui et al. [11]  Machine Learning  SCADA Data  

[12] 
Novel Deep Small-World Neural Network 
(DSWNN) 

SCADA Data of Wind Turbines 

[13] LSTM-SDAE and XGBoost Historical SCADA Data 

Nie et al. [14] Novel Autoencoder with Dynamic Feature 
The bearing vibration signals of Case 
Western Reserve University (CWRU) 

Roelofs et al. [15] Novel Method ARCANA 
SCADA data of wind farms for 2016 and 
2017 



Hoffmann et al. [16] Deep Autoencoder (DAE) 
The monitoring systems collected data 
according to the instrumentation of the wind 
turbines. 

[17] LSTM-based VAE-WGAN Small and Noisy Wind Turbine Datasets 

[18] DBSCAN method Wind and Solar Power Stations Dataset 

Du et al. [19] Denoising AutoEncoder (DAE) Normal History Dataset 

[20] LSTMAutoencoder (LSTM-AE) Vibration Data of Wind Turbines 

Ding et al. [21] Artificial Intelligence Technology (CNN) 
Operational data of four wind turbine 
equipment 

Amini et al. [22] Artificial Intelligence Neural Network SCADA data recording of nine WTs 

 
In Table 1, it is evident that researchers have conducted experiments utilizing a diverse assortment of pre-trained 
deep learning models across multiple SCADA datasets of Wind Turbines, with a particular emphasis on SCADA 
data, small and noisy wind Turbine data, and vibration data. These investigations have yielded a spectrum of 
accuracy scores. Consequently, our research focuses on the SCADA Data of Wind Turbines, aiming to enhance 
its accuracy to a level that meets acceptable standards. 
 
3. Approach Proposed 

As per our objective and motivations, this study is associated with some background ideas and research efforts as 
shown in Figure. 1. Briefly, especially using deep learning models for anomaly detection and supporting it with 
Aeolian wind speed processing has been remarkable ideas to follow. In general, widely followed automatic 
detection approaches performed with Deep Learning models such as LSTM (Long Short-Term Memory), CNN 
(Convolutional Neural Network), and GRU (Gated Recurrent Unit) have been directed to the detection of the 
minimum and maximum values of wind speed as well as predict the power produced by wind turbines (see Fig. 
1). 
 

 
Fig. 1. Ideas and research efforts on the background of this study 
 
In the context mentioned above, this study followed an easy-to-design data pre-processing and deep learning 
approach for the anomaly detection of Aeolian wind speed by considering wind turbines’ SCADA data, Wind 
Power Data, and Smart sensors as input data. Initially, previously unlabeled SCADA data from wind parc and 
smart sensors are collected, and further, the collected data are pre-processed using a feature engineering technique. 
Our proposed approach is then used to train and classify the SCADA dataset. Finally, some evaluation criteria are 
used to gauge performance (see Fig. 2). 



 

 
Fig. 2. Main Steps of the proposed approach 
 
3.1. SCADA Data Collection and Dataset Analysis  

In the literature, the wind turbines are connected to the SCADA system, which collects data about the wind turbines 
continuously. The SCADA system supervises the operating status of the wind turbines and protects them from 
extreme loads. In Wind Turbines, SCADA Systems measure and save metrological datasets for 10-minute intervals 
[23]. According to [24], the SCADA system typically monitors hundreds of variables with a low sampling 
frequency, ranging from every few seconds to minutes. The logged data includes details such as the direction of 
the wind and the speed of the wind. This dataset has been used for analyzing the performance of algorithms 
(Machine/Deep Learning) used for anomaly detection of aeolian wind speed. The Wind Turbine SCADA, wind 
power, and smart sensor datasets used in this paper to test the accuracy of the proposed algorithms are taken from 
the Kaggle website1. The current dataset is organized in per-year comma-separated values (.csv) files from January 
1, 2018, to December 31, 2018.  The wind farm is located at Yalova in the north-western region of Turkey [25]. 
These wind turbines are equipped with a SCADA unit, and five attributes are reported at 10-minute intervals (See 
Table 2): 

 
Table 2. The Wind Turbine SCADA Dataset Features 

Feature Description 
Date/Time 10-minute intervals (timestamp of the observation). 

LV Active Power (kw) The power generated by the turbine for that moment. 

Wind Speed (m/s) 
The wind speed at the hub height of the turbine (the wind speed 
that the turbine uses for electricity generation). 

Theoretical_Power_Curve (KWh) 
The theoretical power values that the turbine generates with that 
wind speed which is given by the turbine manufacturer. 

Wind Direction (°) 
The wind direction at the hub height of the turbine (wind turbines 
turn to this direction automatically). 

 
Moreover, Table 3 presents the raw dataset collected by the SCADA system. The data set shown in Table 3 holds 
a total of 50,530, 10 min of measurements of Wind Speed, Active Power, Theoretical Power, and Wind Direction. 
For the resulting dataset, Wind Speed, Wind Direction, and Active Power were extracted and utilized to develop 
the anomaly detection models.  

Table 3. Raw dataset stored by the Wind Turbine SCADA systems. 

                                                           
1The Wind Turbine SCADA Dataset [Online]. Available: https://www.kaggle.com/datasets/berkerisen/wind-turbine-scada-
dataset/data 



Date Time 
Active Power 

(kw) 
Wind Speed 

(m/s) 
Theoretical_Power

_Curve (KWh) 
Wind Direction (°) 

January 01, 2018  00:00 380.047 5.311 416.328  259.994 
January 01, 2018  00:10 453.769 5.672 519.917 268.641 
January 01, 2018  00:20 306.376 5.216 390.900 272.564 
January 01, 2018  00:30 419.645 5.659 516.127 271.258 
January 01, 2018  00:40 380.650 5.577 491.702 265.674 
January 01, 2018  00:50 402.391 5.604 499.436 265.674 

…..  ….. ….. ….. ….. ….. 
December 31, 2018 23:50 2820.466 9.979 2779.18  82.274 

 
In terms of data analysis, the researchers considered the wind speed as a temporal data series to predict the intensity 
of the wind in the coming days. The time-series data is transformed into a visual representation, where all its 
characteristics and distinguishable elements are noticeable. As well, the researchers can see regions where the 
wind blows the most, and model corroboration in terms of actual energy generation, anomalies, and wind behavior 
in terms of speed and direction. Furthermore, the dataset has been divided into two parts: Training and Testing. 
The training data consists of 80% of the dataset. The checking and testing data, on the other hand, consist of 20% 
of the dataset. 
 
3.2. Data Preprocessing  

Data pre-processing is crucial in Deep Learning (DL) because "Better data beats fancier algorithms". Data 
preprocessing is an important aspect of data preparation that prioritizes data quality analysis. It is the basis for the 
accuracy and reliability of the prediction model [6; 10]. It should be noted that data preprocessing is an essential 
step to eliminate invalid data before undertaking the modeling of SCADA data. These data will reduce model 
accuracy and should be removed before model training. The SCADA data used for this study has an extensive 
range of wind turbine parameters. Additionally, wind turbine SCADA data is adopted, and several parameters are 
selected based on physics knowledge and correlation coefficient analysis for normal behavior modeling. The 
dataset contains different outliers, for example, negative power values, abnormal wind speed, and out-of-range 
values. Data processing is a technique mostly used in DL to convert the data into a desired and meaningful. There 
are several useless or missing data in the collected sequences because of the acquisition failure and unscheduled 
downtime. So the raw data will be preprocessed first before training the model to assure accuracy. Due to the 
failure during the transmission and storage, some missing values and blanks break the integrality of the raw data. 
The features with less contribution are removed and the model accuracy is calculated again. These steps are 
repeated until we get the best model. This will continue until the maximum number of folds is reached. 
In this study, we create a data frame to associate feature names with their importance. In this regard, we see that 
Wind turbine systems can't generate any power if the wind speed is less than 4 m/s. Then, when the wind speed is 
larger than 4 m/s to 11 m/s, the relation between them is linear meaning that increasing the wind speed allows 
turbines to generate more power. Finally, after the wind speed passes 11 m/s, the power generated is saturated at 
3600 KWh (see Fig. 3). 

 
Fig. 3. Sort features by importance 

In this Python data visualization, we worked with the Pandas scatter_matrix method to visualize the relationship 
between multiple variables in a dataset at once, namely to explore trends between the two variables (Wind Speed 



(m/s) and LV ActivePower (kW)). For data normalization, this means the training data will be used to estimate the 
minimum and maximum. The Scikit-learn scaler is a fundamental tool that helps standardize numerical data within 
a specific range, making it suitable for deep learning algorithms that are sensitive to feature scaling. The 
MinMaxScaler() function scales each feature individually so that the values have a given minimum and maximum 
value, with a default of 0 and 1. 

4. Deep Learning Architecture Overview  

Deep Learning (DL) is a part of an artificial neural network technique and a subclass of machine learning [26; 27]. 
Moreover, DL is part of a broader family of machine learning methods based on learning data representations [26; 
28]. Deep learning is an advanced sub-field of machine learning, which advanced Machine Learning closer to 
Artificial Intelligence. According to [29], multiple layers in deep learning algorithms are used for a higher feature 
level in the input dataset. Furthermore, Deep Conventional Neural Network (DCNN) is a class of deep, feed-
forward artificial neural networks that has successfully been applied to analyzing visual imagery.  

4.1. Convolutional Neural Networks (CNNs) 
In most literature, a neural network comprises diverse layers associated with each other, working on the structure 
and function of the human brain. It learns from large volumes of information and uses complex calculations to 
prepare a neural network. In recent years, the Convolutional Neural Network (CNN) has been a type of artificial 
neural network mainly used in data processing with grid-like topologies, such as image recognition and 
classification [30]. Likewise, CNN is designed based on a convolutional layer, which is considered the core 
building block of a CNN. It presents multiple parameters that include a group of learnable kernel filters. Each filter 
was convolved across the width and height of the input volume [27]. CNNs use convolution in at least one of their 
layers, instead of a general matrix multiplication, as do the feed-forward deep neural networks studied in the 
previous chapters. Compared to other classification algorithms, the preprocessing required in a CNN is 
considerably lower [29]. CNN explicitly assumes the input is an image and reacts it into its architecture. CNN 
usually contains a Convolutional layer, a Pooling layer, and a fully connected layer. Convolutional layers and 
Pooling layers are stacked on each other; fully connected layers at the top of the network output the class 
probabilities (see Fig. 4). The advantages of CNNs include feature selection, weight sharing, and pooling 
mechanisms. For these reasons, the network may recognize increasingly complex elements, including objects, 
faces, and other fields of data science, including big data analysis [31].  

 
 
Fig. 4. Convolutional Neural Networks (CNNs) Architecture [31] 

4.2. Long Short-Term Memory (LSTM) 
The long short-term memory (LSTM) method was proposed by [32] to deal with the gradient vanishing problem 
in RNN. It comprises recurrent-network units that keep track of long and short-term values, store data in memory 
cells, and are more adept at recognizing and using long-range context [24; 31]. Moreover, the LSTM method can 
effectively extract features from non-linear time series data and has been widely used in big data analysis, image 
processing, and speech recognition. According to [34], LSTM can be used as a complex nonlinear unit to construct 
a larger deep neural network, which can reflect the effect of long-term memory and has the ability of deep learning. 
LSTM network consists of an input layer, an output layer, and a plurality of hidden layers, which is composed of 
memory cells. The LSTM network architecture consists of three parts, as shown in the figure below, and each part 
performs an individual function (see Fig. 5). 



 
Fig. 5. The Long Short-Term Memory (LSTM) Architecture [34] 

In this respect, an LSTM has a hidden state where 𝐻௧ିଵ represents the hidden state of the previous timestamp and 
𝐻௧  is the hidden state of the current timestamp. In addition to that, LSTM also has a cell state represented by 
C୲ିଵ and 𝐶(௧) for the previous and current timestamps, respectively. 

4.3. Gated Recurrent Unit (GRU) 
Gated recurrent unit (GRU) is similar to LSTM but has fewer gates and is a variant of the RNN architecture where 
gates are used to control the flow of information between neurons [35]. For [36], the Gated recurrent unit (GRU) 
network is regarded as an updated version of LSTM with a simple structure including a memory cell and gate 
units. According to [37], the GRU neural network is a circular network structure that determines the current output 
information through the input information at the current moment and the output information at the previous 
moment. Formally, Fig. 6 shows that the reset gate is used to control the degree of ignoring the information of the 
previous moment, and the update gates control whether the status of GRU is updated and how many of the gating 
units are updated. Therefore, the output information at each moment in the GRU neural network depends on past 
information. Therefore, its chain attribute is closely related to the sequential labeling problem and is applied to the 
word segmentation task. The activation gate ℎ௧ of the GRU at time 𝑡 is a linear interpolation between the previous 
activation ℎ௧ିଵ and the next activation ℎ௧%. For this, the equation of GRU can be described as: 

𝑟௧ = 𝜎(𝑊௥𝑥௧ + 𝑈௥ℎ௧ିଵ)                              (1) 

𝑧௧ = 𝜎(𝑊௭𝑥௧ + 𝑈௥ℎ௧ିଵ)                              (2) 

ℎ௧% = 𝑡𝑎𝑛ℎ(𝑊௛𝑥௧ + 𝑈௛𝑟௧ . ℎ௧ିଵ)              (3) 

ℎ௧ = (1 − 𝑧௧)ℎ௧ିଵ + 𝑧௧ℎ௧%                       (4) 

Where 𝑟௧ is the reset gate determining the number of ignored prior information. Where 𝜎 is the activation function 
sigmoid, which ranges from 0 to 1. 𝑥௧  represents the input of the memory unit, 𝑧௧  is the update gate which 
determines the number of information input to the next state cell. 𝑊௧ , 𝑊௛ 𝑎𝑛𝑑 𝑊௭  represent weight vectors 
corresponding to the gates in the memory unit, respectively. 

 
Fig. 6. The Gated Recurrent Unit (GRU) neural network unit structure [37] 

5. Experimental and Results   

In the literature, most of the research works that apply deep learning for anomaly detection of aeolian wind speed 
use SCADA datasets to train the model, meaning a huge burden for the experts to label the SCADA data 



accordingly. In this section, we present the performance results of the wind turbine SCADA dataset and other 
datasets. Lastly, we compared the performance of our model with previous works. 
 
1.5. Hardware Specifications 

The experimental environment of this paper is Windows 10 system, Python 3.6.2, Tensorflow 1.11.0, and Jupyter. 
In the hardware device section, the CPU is an Intel I9-11900k CPU and an NVIDIA 3070 with 12 GB of VRAM. 
The primary software configuration included Python compiler, Spyder 4.0.1 editor, deep learning framework 
PyTorch, and uses the neural network library Keras 2.2.4, Numpy 1.22.3, Pandas 1.4.2, SciPy 1.8.0, Scikit learn 
1.0.2, and Matplotlib 3.1.3. 
 
2.5. Performance Measures  

A range of statistical techniques was employed to assess the deep learning-based architecture's prediction. To this 
end, the three standard metrics, the mean absolute error (MAE), root mean square error (RMSE), mean squared 
error (MSE), and coefficient of determination (R2), are used to measure the model prediction performance [25; 38; 
39]. These measures are defined as follows: 
 

𝑀𝐴𝐸 =
ଵ

ே
∑ |𝑥పෝ − 𝑥௜|

ே
௜ୀଵ                        (5) 

𝑅𝑀𝐴𝐸 = ඥ∑ (𝑥పෝ − 𝑥௜)
ଶ/𝑁ே

௜ୀଵ              (6) 

𝑀𝑆𝐸 =
ଵ

ே
∑ (𝑥௜ − 𝑥పෝ )ଶே

௜ୀଵ                      (7) 

𝑅ଶ = 1 −
∑ (௫೔ି௫ഢෞ)మಿ

೔సబ

∑ (௫೔ି௫ഢതതത)ಿ
೔సబ

                          (8) 

Where 𝑥௜ is the actual value of wind power, 𝑥పෝ  is the predicted value of wind power, and 𝑅ଶ value ranges between 
0 and 1, and higher value corresponds to high performance. 
The MAE measures the average magnitude of the errors by considering the absolute value, which presents the 
accuracy of the prediction. The RMSE measures the forecasting error by differencing the prediction and the actual 
value, which is squared, average, and then followed by a square root. In the case of MAE and MSE the lower value 
of prediction corresponds to high accuracy. 
 
3.5. Results and Discussions  

In this section, we apply the proposed scheme to detect Wind Turbine (WT) anomalies using the above SCADA 
data. To illustrate the superiority of deep learning models, we also consider several popular models and compare 
their performance in exploring the possible nonlinear mechanism. This section presents the results of our deep 
learning models using tables and graphs containing the research questions and the categories associated with each 
question. The feasibility of a learning model is limited by assessing the performance of prediction models using 
multiple assessment measures. This study evaluated the model performance according to the indicators described 
in Section 2.5. First, we present a deep learning model for the prediction of minimum and maximum wind speed 
values, as well as the prediction of power output. In this scenario, Table 3 presents the proposed algorithm results, 
the evaluated thresholds, and the respective metrics. The proposed DL models have achieved high performance, 
with an R2 value of 82.37% on the training dataset. In addition, MSE, MAE, and RMSE values are 0.0242, 0.1180, 
and 0.1555, respectively, and a good prediction result is obtained with Pearson Correlation metrics (see Table 4). 
This shows that the model is not overfitting and can capture the connection between the data in the newly acquired 
test dataset well. 
 

Table 4. The evaluation metrics values of the achieved results using the DL models 

 
Model 

Evaluation of Performance Using Training Data Evaluation of performance using Testing Data  Data 
Train 
Time 
(sec.) 

MSE MAE R2 
RMSE 
(µg/m3) 

PC 
(r) 

MSE MAE R2 RMSE 
(µg/m3) 

PC 
(r) 

LSTM 0.036 0.3211 0.736 0.1904 0.8842 0.037 0.325 0.734 0.199 0.886 5.02 
CNN 0.147 0.3211 0.736 0.3715 0.0766 0.175 0.323 0.727 0.376 0.079 5.01 
GRU 0.024 0.1181 0.823 0.1556 0.9105 0.024 0.190 0.824 0.158 0.912 4.02 



 
When the results are examined, the model is able to analyze the data well and shows a successful prediction 
capability. This is due to the ability of the GRU-based deep learning method to capture long-term dependencies. 
Compared to classical deep learning-based methods, GRU can also be considered a variation on the LSTM because 
both are designed similarly and, in some cases, produce equally excellent results. This allows the model to make 
predictions based on previous data. The MSE, MAE, R2, RMSE, and Pearson Correlation reported were 0.024, 
0.12, 82%, 0.16, and 0.91, respectively. The performance measures shown in Table 3 display that the GRU model 
has a higher R2 value than the LSTM and CNN models. Furthermore, the accuracy measures obtained indicate that 
the GRU model outperforms the other machine learning models tested, with an accuracy of 96.9%, defining the 
prediction capabilities of the model. 
For the identification of normal behavior, it is well-known that the power curve is typically employed to measure 
the performance of a WT. As seen in the graph,  the red points depict the relationship between the wind, where the 
x-axis represents the wind speed in m/s, and the y-axis represents the active power in kwh (Scatter Diagram: wind 
speed vs LV Active Power) (see Fig. 7). An increment in power is observed with the increase in wind speed. 
However, there are some outliers where the power is zero, even with a high wind speed. 

 

Fig. 7. The scatter plot of LV Active Power vs Wind Speed and the identified normal behavior interval  
 
On the other hand, the baseline models included in this experiment are the deep neural network (CNN, LSTM, and 
GRU) models. The parameters of these models are presented in the Table. 5.  
 

Table 5. Parameters setting of the deep neural network (CNN, LSTM, and GRU) 
 Batch size Learning 

rate 
Epochs Optimizer Activation function 

used in the output 
Activation function used 

in the hidden 
64 0.0001 50 Adam Linear ReLU 

 
In this context, the results show that our deep learning models provide good performance for detecting wind speed 
anomalies and predicting power output for training and validation phases (see Fig. 8). 

 

Fig. 8. The anomaly detection of LV active power vs wind speed 



For efficiency assessment in this study, samples from running conditions, which are used for validation and test 
phases, are illustrated in Fig.9, which represents different prediction models.  Figure 8 shows the actual active 
power and the predicted power values by the proposed architecture for the date range 01.12.2018-01.12.2019 on 
the time axis graph. The actual data and the predicted data are given in the same figure (see Fig. 9). In this context, 
the results show that the GRU and LSTM models perform better than the CNN model in predicting the active 
power. Moreover, the LSTM model exhibits strong overall performance with favorable performance metrics, while 
the GRU model stands out with its high MSE and Pearson correlation. The proposed model performed well by 
overlapping with the actual value. In summary, anomaly detection of Aeolian wind speed includes the process of 
continuously observing if certain indicators deviate from normal behaviors, which can detect anomalies of Aeolian 
wind speed in the early stage. If the indicators consistently surpass the threshold for an extended period of time, 
the WT will be regarded as abnormal and undergo a shutdown to check the components and resolve the 
malfunction. 
 

 

Fig. 9. The prediction model on the validation and test data 
 
As occurs in many applications, the amount of data available for training and testing is limited. Unfortunately, it 
is necessary, in order to build good models, to use as much available data as possible. Additionally, small validation 
data sets will give noisy estimates of predictive performance. It is expected that deviations from a normal state can 
be seen in the 10-minute average data of the sensors and the operational data, and this is indicated as an anomaly 
by the trained GRU. The result demonstrates that the approach can detect possible anomalies before the failure 
occurrence. In addition, since this research was conducted on a limited dataset, we plan to demonstrate its validity 
on various datasets and real-world wind farm environments. Continued technical and research efforts to address 
these issues are expected to open up new possibilities and contribute to the broader field of artificial intelligence, 
namely, deterministic artificial intelligence. In addition, anomaly detection needs to be performed using datasets 
containing different types of anomaly data in order to classify and predict anomaly types. 
 
4. 5. Comparison against State-of-the-Art Methods 

Interestingly, these techniques provide insights into the model’s decision-making processes, contributing to a more 
interpretable and transparent understanding of the detections and predictions. In conclusion, we conducted a 
comparative study of our proposed approach with other existing anomaly detection of Aeolian wind speed models 
based on the approach used in experimentation, performance metrics used for evaluation, and percentage accuracy 
achieved (see Table 6). 

Table 6. Comparison of the Aeolian wind speed anomaly detection proposed model with existing anomaly 
detection and classification methodologies. 

Techniques applied  Dataset used Performance Metrics 
Machine Learning  SCADA Data  244 alarms from 35 different types 

are recorded in the SCADA alarm 
logs 

Novel Deep Small-World Neural Network 
(DSWNN) 

SCADA Data of Wind Turbines 
Accuracy of DSWNN 97,36% 

LSTM-SDAE and XGBoost Historical SCADA Data 
MSE 0.0143 
MAE 0.0132 
R2 96 % 



RMSE 0.01778 

Novel Autoencoder with Dynamic Feature 
The bearing vibration signals of Case 
Western Reserve University (CWRU) 

Accuracy 97,14% 

Novel Method ARCANA 
SCADA data of wind farms for 2016 
and 2017 

MAE 0.097 

Deep Autoencoder (DAE) 
Data collected by the monitoring 
systems according to the wind turbine 
instrumentation. 

MAE 0.1735 
Accuracy 99,70% 
Precision 97,80% 
Recall 100% 

LSTM-based VAE-WGAN 
Small and Noisy Wind Turbine 
Datasets 

MAE 0.008  
RMSE 0.002 
Reconstruction Error 99.7% 
𝐹1 score 0.8381 

DBSCAN method 
Wind and Solar Power Stations 
Dataset 

MAE 0,2214 
MSE 0,012 
RMSE 0,1622 

Denoising AutoEncoder (DAE) Normal History Dataset 

MAPE 9.69 
MSE 5.29 
MAE 8.45 
R2 15.65 

LSTMAutoencoder (LSTM-AE) Vibration Data of Wind Turbines Accuracy of 97.44% 

Artificial Intelligence Technology (CNN) 
Operational data of four wind turbine 
equipment 

Accuracy of CNN 95,36% 

Artificial Intelligence Neural Network SCADA data recording of nine WTs Accuracy of CNN 99,8% 

Proposed Approach (Deep Learning) Wind Turbine SCADA Dataset 

MSE 0.024 
MAE 0.12 
R2 82 % 
RMSE 0.16 

 
 
4. Conclusion  
On the basis of the scientific literature reviewed by the authors, we can conclude that the most frequently found 
AI techniques for aeolian wind speed anomaly detection are deep learning algorithms, appearing in the total 
articles, respectively. As explained in the introduction section, different deep learning architectures have been 
successfully used in detecting the anomaly of aeolian wind speed. In addition, MSE, MAE, R2, and RMSE are the 
most commonly used anomaly detection model evaluation metrics. Considering the complex, changeable working 
environment of wind turbines, an anomaly detection deep learning models is proposed in this paper, which is 
employed for anomaly detection of aeolian wind speed. The study focused on anomaly detection within a single 
wind farm, using different amounts of tuning data. We used data from the supervisory control and data acquisition 
system to improve wind turbine fault detection accuracy. These architectures are capable of successfully capturing 
complex relationships between data. However, increasing the number of layers may increase the computational 
cost. 
To further analyze the anomaly of aeolian wind speed based on SCADA data, owners and operators of WTs must 
provide detailed information and high-frequency data. Ideally, this information should be made accessible to 
researchers, even if under confidentiality agreements. However, Deep Learning is computationally expensive and 
may require high computational resources while working with large datasets, and this is critical from the 
perspective of renewable energy applications. Despite the above relevant findings, further research is needed to 
improve the model. Moreover, more complex and complete cases are needed to verify the wide applicability of 
the developed models. In the future, optimization algorithms can be used to enhance accuracy. 
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