

Artificial Intelligence for Sustainable Waste Management: A Literature Review

Syed Tasleem Ahmed¹, Kiran Raj K M², Pooja H³, Priyanka N⁴, Rohith Vilas Reddy⁵

Department of Artificial Intelligence and Machine Learning

Alva's Institute of Engineering and Technology

Moodbidri, Karnataka, India

ahmedtasleem296699@gmail.com, kiranraj@ait.org.in, harishpooja260@gmail.com,
priyanka74116@gmail.com, rohithvilas4@gmail.com

Abstract—This study cites developments in artificial intelligence (AI) applications in solid waste management (SWM); it employs major approaches to neural networks, the Internet of Things, and evolutionary algorithms. Integration with Industry 4.0 technologies has led to efficient, scalable, and sustainable waste management solutions, such as the Internet of Things, robots, and blockchain. Artificial Intelligence (AI) is revolutionizing waste management by leveraging real-time monitoring, predictive analytics, and waste-to-energy technologies. AI-based solutions optimize waste collection, minimize landfill reliance, and ensure sustainable waste processing. By combining AI with smart sensors and automation, cities can improve waste segregation, reduce human intervention, and eliminate operational inefficiencies. AI-based forecasting models also allow municipalities to predict waste generation patterns, enabling proactive management strategies that minimize environmental footprint and maximize urban cleanliness. Moreover, a discussion has been made of IoT and the creation of smart garbage containers which will optimize the waste collection route. The study further highlights evolutionary backbone approaches for addressing complex SWM problems, such as genetic algorithms and particle swarm optimization. It also attests to the need to take note of performance criteria, such as segregation efficiency and recycling rates, in managing and improving existing waste management systems. With an AI, cities can move to a circular economy while protecting the environment and increasing the well-being of society.

Index Terms—AI, Solid Waste Management, IoT, neural network, smart garbage, blockchain.

I. INTRODUCTION

This study puts more emphasis on the use of advanced AI techniques (e.g., neural networks, fuzzy logic, evolutionary algorithms) and Industry 4.0 technologies, including IoT, robots, and blockchain in enhancing solid waste management (SWM). Classical solid waste management (SWM) techniques include chemical composting, rudimentary sorting, and informal recycling. The general intention was to separate organic and inorganic trash for reuse versus disposal in the landfill. Composting organic waste tends to restore soil nutrients. But with rapid urbanization, these processes lost their efficiency due to increased volumes of varied wastes. While informal recycling systems are cost-effective, they often lack proper health and safety measures, exposing workers to hazardous conditions. Scavengers and waste pickers in developing regions handle contaminated materials without protective gear, increasing

their risk of respiratory diseases, infections, and chemical exposure. Additionally, the lack of proper waste sorting mechanisms in these systems leads to inefficiencies in recycling and contributes to increased pollution. Governments and organizations must implement structured policies to integrate informal recyclers into formal waste management systems, ensuring their safety while improving recycling efficiency. Open dumping was another widely followed practice that messed up land, water, and air and constituted breeding grounds for disease vectors like rats and insects. These waste disposal methods have resulted in serious environmental impacts, such as enhanced greenhouse gas emissions, groundwater pollution via leachate contamination, and irreversible destruction of natural ecosystems. Open dumping and uncontrolled landfills are among the largest contributors to methane emissions, a significant cause of climate change. In addition, inefficient waste disposal upsets biodiversity, pollutes water and soil sources, and has serious health implications for communities around waste disposal facilities. However, these methodologies are simply incapable to be scaled and are evidently not systematic, hence finding themselves unfitting for modeling municipal solid waste (MSW) management in urban terrain. Poor waste management adversely affects public health, while improper waste segregation negatively impacts material recovery and recycling. Limitations of the systems provided a pressing need for the emergence of scientifically sound, sustainable, and scalable alternatives.

There is much discussion about technological advances in solids waste management, such as AI, IIoT, robotics, and blockchain, into modernized, efficient, and sustainable systems. A waste system powered by AI-neural networks and predictive modeling therefore is honed to carry out operations such as waste segregation, waste collection route optimization, and waste projection. Internet of Things (IoT) smart bins. Nevertheless, such approaches are simply not scalable and are clearly not systematic, so they are not pertinent to modeling MSW management in metro environments. Poor waste management is deleterious to public health, while improper waste segregation blocks material recovery and recycling. The limitations of their systems created the compelling need to develop scientifically reliable, sustainable, and scalable alternatives. Real-time monitoring of waste levels leads to elimi-

nating inefficiencies in collection and transportation. Robotic systems enhance material sorting and recycling by significantly increasing speed and accuracy. Waste-to-energy and biogas production technologies have now emerged as feasible alternatives to landfills, converting wastes into resources. Besides, industry 4.0 technologies use data analytics to facilitate decision-making and establish a scalable and adaptive waste management framework such as SWM 4.0. These advances are in line with the goals of the 5Rs (reduce, reuse, recycle, recover, and redesign), which value sustainable practices and circular-economy concepts. By reducing challenges for operating efficiency while minimizing environmental impacts on public health, ecosystem quality, and human well-being, modern approaches facilitate urban and periurban social well-being. They provide scalable solutions to urban and rapid expansion with major benefits for societal health and the environmental landscape.

II. MOTIVATION

III. TYPES OF WASTE:

The classification of waste as shown in Table I is essential for effective SWM, as it facilitates targeted strategies for reduction, recycling, and reuse [1]. Municipal solid waste (MSW), comprising household and commercial waste like plastics, food scraps, and paper, constitutes a significant portion of waste generated in urban areas. [2] Industrial waste, which is a byproduct of manufacturing and industrial activities, often includes hazardous components that require specialized disposal methods [3]. Biomedical waste, originating from medical and clinical settings, demands stringent handling protocols to mitigate contamination risks. Additionally, electronic waste (e-waste), consisting of discarded electronic devices and components, presents unique challenges in terms of recycling and disposal due to the presence of valuable but toxic materials [4]. Understanding these waste categories is foundational for developing AI-driven solutions tailored to the specific requirements of each type, thereby enhancing the overall efficiency and sustainability of SWM systems [1].

Fig. 1. 5R's of Solid Waste Management

TABLE I
TYPES OF WASTE AND EXAMPLES

Type of Waste	Examples
Municipal Solid Waste (MSW)	Plastics, food scraps, paper, household waste
Industrial Waste	Chemical residues, metals, industrial byproducts
Biomedical Waste	Used syringes, surgical gloves, expired medicines
Electronic Waste (E-Waste)	Discarded phones, laptops, batteries, circuit boards

IV. ROLE OF EMERGING TECHNOLOGIES IN WASTE MANAGEMENT

A. Artificial Intelligence in Waste Management

AI-driven waste management systems are transforming the way waste is handled, enabling automation, efficiency, and cost reduction. Key applications include:

- 1) Automated Waste Sorting: AI-powered robots use computer vision and deep learning to accurately sort recyclables and non-recyclables [4], [5].
- 2) Predictive Maintenance: Machine learning models predict equipment failures in waste treatment plants, minimizing downtime and enhancing operational efficiency [6].
- 3) Waste-to-Energy Optimization: AI optimizes incineration processes, improving energy recovery and reducing emissions [7].

B. Blockchain for Transparency and Accountability

Blockchain technology improves transparency and traceability in waste management systems. Its applications include:

- 1) Tracking Waste Movement: Blockchain ensures secure tracking of waste from generation to disposal, enhancing accountability [8].
- 2) Incentive Mechanisms: Smart contracts enable reward-based systems for citizens participating in waste segregation and recycling [4].

However, challenges such as high energy consumption and integration issues must be addressed [8].

C. Robotics in Waste Sorting and Collection

Robotics plays a vital role in automating labor-intensive waste management processes:

- 1) Smart Sorting Systems: Robotic arms equipped with AI sort waste on conveyor belts with high accuracy [5].
- 2) Autonomous Waste Collection: AI-powered vehicles optimize waste collection routes, reducing operational costs [4].

D. IoT-Enabled Smart Waste Management

IoT facilitates real-time monitoring and data collection, enhancing decision-making processes:

- 1) Smart Bins: IoT-enabled bins notify authorities when full, ensuring timely collection. A study by [6] found that IoT-enabled bins reduced collection costs by 25% in New Delhi, demonstrating their efficiency in optimizing waste collection routes.
- 2) Data-Driven Solutions: Sensors and devices provide data for the analysis of waste composition and resource allocation [9].

V. LITERATURE REVIEW:

A. YOLO and CNN

YOLO (You Only Look Once) and CNNs (Convolutional Neural Networks) are widely used for object detection and classification in solid waste management.

YOLO is an efficient real-time object detection algorithm. It processes images in a single pass, making it faster than traditional methods like R-CNN and SSD. Applications in waste management: Detecting and classifying different types of waste (e.g., plastic, paper, metal, glass, organic). [4] Sorting waste on conveyor belts in recycling plants. Training datasets often include annotated images of various waste categories. Example: Using YOLOv5 or YOLOv7 for real-time waste classification in smart bins. [8]

CNNs extract spatial features from images and are the backbone of object detection models like YOLO. Applications: Classifying waste categories from images captured by cameras. Used in conjunction with robotic arms for waste segregation. Integrating CNN models with robotics for enhanced accuracy in smart recycling systems. [5] Example: A CNN model trained on datasets like TrashNet or TACO (Trash Annotations in Context).

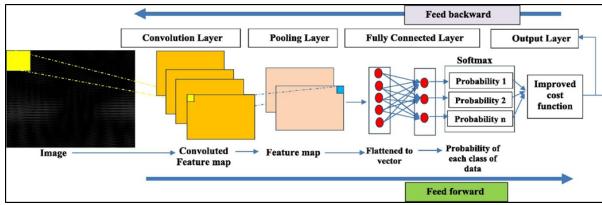


Fig. 2. An Architecture of CNN used in SWM

TABLE II
COMPARISON OF AI TECHNIQUES IN WASTE MANAGEMENT

AI Technique	Strengths	Limitations
CNN	High accuracy in image classification	Requires large labeled datasets
RNN	Good for time-series predictions	Struggles with long-term dependencies
YOLO	Fast real-time object detection	Lower accuracy than CNN in complex images

B. Deep Learning

Deep learning techniques have demonstrated significant potential in solid waste management, particularly in automated waste classification, anomaly detection, and predictive modeling.

Key Deep Learning Techniques:

Autoencoders: For anomaly detection in waste processing systems. [2]

CNN-based Models: In a study by [4], a CNN model was trained on a waste classification database, with the model attaining 92% accuracy for real-time segregation. The model's resilience was tested against varied lighting conditions and types of wastes, showing superior adaptability under real-world situations .

RNN-based Predictive Modeling: Another study [8] investigated using RNNs to forecast patterns of waste production

based on municipal past data. The model effectively predicted seasonal changes, enabling the waste collection crew to pre-adjust their schedules ahead of time, decreasing overflow incidents by 15%.

Comparison and Limitations: Although CNNs perform well with image-based sorting of waste, they need substantial labeled datasets to be trained successfully. RNNs, conversely, can be used best for time-series forecasting but cannot handle long-range dependencies in patterns of waste production. The research in the future must emphasize the integration of AI models, integrating CNNs to detect waste and RNNs to predict waste management, and thereby providing an integrated and better waste management system.

Development of smart bins that recognize and sort waste automatically. [10]

Fig.3 illustrates the flowchart of Deep Learning Techniques and Applications in Waste Management

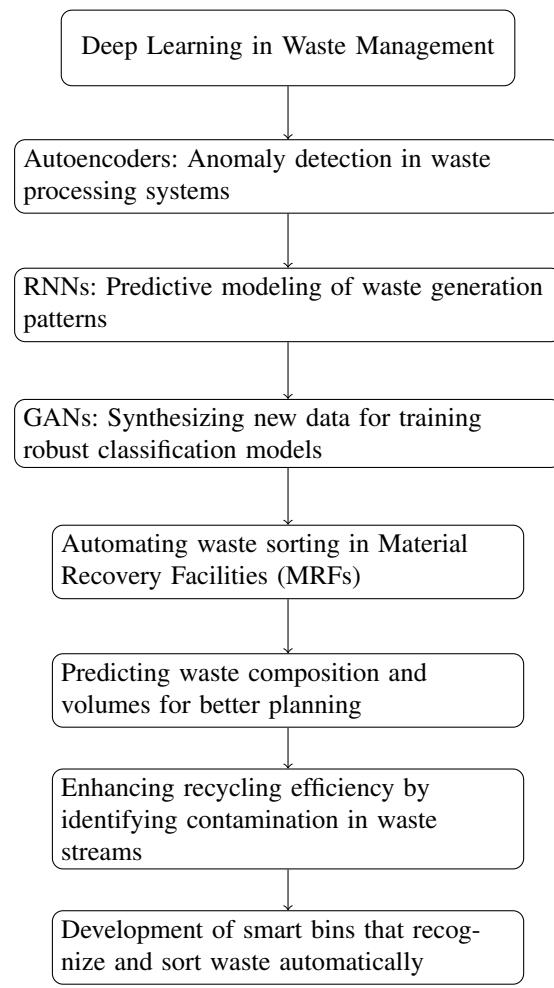


Fig. 3. Flowchart of Deep Learning Techniques and Applications in Waste Management

C. AI/ML Techniques Used in Solid Waste Management

Artificial Intelligence (AI) and Machine Learning (ML) offer innovative solutions for handling and optimizing waste

management.

Natural Language Processing (NLP): Analyzing text data from waste-related complaints or reports.

Expert Systems: Decision support for landfill site selection or waste treatment options. [2]

Computer Vision: Used for waste classification and detection in recycling plants.

ML Algorithms: Supervised Learning (e.g., SVM, Random Forest): Waste classification based on labeled datasets. [4]

Unsupervised Learning (e.g., K-Means, DBSCAN): Clustering waste types in mixed datasets. [11]

Reinforcement Learning: Optimizing collection routes for waste trucks.

Transfer Learning: Adapting pre-trained models for waste classification tasks. [8]

Case Studies: Predictive analytics for waste generation trends using ML models. [12] AI-driven robotic systems for sorting waste materials with high accuracy. [5]

D. Use of IoT in Solid Waste Management

The Internet of Things (IoT) facilitates real-time monitoring, optimization, and automation in waste management processes.

IoT-enabled Smart Bins: Sensors (e.g., ultrasonic, weight, and gas sensors) to detect fill levels, weight, and odor. [13]

Sending real-time alerts to waste collection teams for efficient scheduling.

IoT in Waste Collection: GPS and RFID integration for tracking waste collection vehicles. [2] Dynamic route optimization to reduce fuel consumption and collection time.

IoT in Recycling: Automated sorting lines with IoT-connected cameras and sensors for waste classification. [10] Data sharing across systems to improve recycling processes.

Smart Waste Management Systems: Centralized dashboards for monitoring city-wide waste collection and processing. [8]

Integration with AI/ML models for predictive maintenance and planning. Examples of IoT Applications: Smart city initiatives implementing IoT-based waste management systems [12].

Companies like Bigbelly using IoT-enabled bins for real-time monitoring and compacting waste.

E. AI for Solid Waste Management (SWM)

AI technologies have been widely applied in SWM to address challenges in waste collection, segregation, and recycling. Computer vision techniques, such as SSD-based models and augmented clustering NMS, are used for automated waste segregation. For example, [4] proposed a Single Shot Detector model for smart garbage management to achieve efficient waste categorization. Optimization methods have also been integrated into SWM processes, such as the hybrid machine learning-mathematical programming approach presented by Ochoa-Barragán et al., which optimized municipal waste management operations during the pandemic. Furthermore, wireless and IoT technologies, as reviewed by Akram et al., enable real-time monitoring and data-driven decision-making, significantly enhancing operational efficiency. A key mathematical formulation utilized in this field includes cost minimization

functions. A critical formula used in optimization models for cost minimization is as follows:

$$\min \sum_{i=1}^n C_i x_i + \sum_{j=1}^m P_j y_j \quad (1)$$

where C_i represents the cost of processing waste type i , x_i denotes the amount of waste processed. P_j is the penalty for unmet constraints, and y_j are penalty variables.

These advancements underscore the transformative role of AI in modernizing and streamlining SWM practices [11].

VI. EVOLUTIONARY ALGORITHMS IN SWM

Evolutionary Algorithms (EAs) are optimization techniques inspired by natural evolutionary processes. They have been applied to solve complex SWM problems, including waste collection routing, recycling system design, and landfill site selection. Below, we discuss three prominent EAs and their applications in SWM.

A. Genetic Algorithms (GA)

Genetic Algorithms (GA) mimic the process of natural selection by iteratively evolving a population of candidate solutions. Each solution, called a chromosome, undergoes selection, crossover, and mutation to generate better solutions over successive generations.

- 1) Steps in GA: The process begins with the initialization of an initial population of solutions. Selection is then performed by choosing parent solutions based on their fitness values. These parents are combined through crossover to produce offspring, and random changes are introduced through mutation to maintain diversity. The algorithm terminates when a predefined condition is met, such as the number of generations or convergence [14].
- 2) Fitness Function: For example, in optimizing waste collection routes, the fitness function can minimize the total distance traveled (D):

$$\min D = \sum_{i=1}^n d_i \quad (2)$$

where d_i is the distance traveled by vehicle i .

- 3) Applications: Genetic Algorithms have been effectively applied in route optimization for waste collection vehicles, scheduling of waste processing facilities, and multi-objective optimization for cost and environmental impact reduction [15].

B. Particle Swarm Optimization (PSO)

Particle Swarm Optimization (PSO) simulates the behavior of a flock of birds or a school of fish. Each particle represents a potential solution and updates its position based on personal and global best solutions.

- 1) Applications: PSO has been used to optimize recycling center locations, minimize waste transportation costs, and design energy-efficient waste treatment systems [16] [17].

C. Differential Evolution (DE)

Differential Evolution (DE) is a population-based optimization algorithm that uses differences between solutions to guide the search process.

Applications: Differential Evolution has been applied to landfill site selection, optimization of waste-to-energy systems, and multi-objective optimization of recycling processes [1] [18].

VII. DATA ANALYSIS

Data analysis plays a pivotal role in understanding and optimizing waste management practices. The integration of AI-driven analytics and statistical methods can offer insights into waste generation trends, segregation efficiency, and recycling potential [19] [20]. Below are examples of key analysis techniques applied in solid waste management.

A. Waste Composition Analysis

Understanding the composition of waste is crucial for identifying opportunities for recycling and energy recovery. Table III illustrates an example of waste composition analysis in an urban area. This type of analysis helps identify materials that can be composted, recycled, or securely disposed of, thereby optimizing resource recovery and minimizing landfill usage [21].

TABLE III
EXAMPLE OF WASTE COMPOSITION ANALYSIS

Waste Component	Percentage (%)	Potential Use
Organic Waste	55	Composting, biogas production
Plastics	15	Recycling, waste-to-energy
Paper	10	Recycling
Metals	5	Recycling
Glass	5	Recycling
Others (e.g., hazardous)	10	Secure disposal

B. Trend Analysis in Waste Generation

Analyzing historical data can help predict future waste generation trends [22]. Seasonal variations often lead to increased waste generation during festivals or holidays. The impact of urbanization is evident in growing urban areas, which typically experience higher volumes of waste. Additionally, economic indicators such as industrial growth are closely correlated with an increase in hazardous waste production. By studying these trends, waste management systems can better plan for periods of higher demand and allocate resources more effectively [20].

C. Route Optimization for Waste Collection

AI and machine learning techniques are increasingly being used to optimize waste collection routes, thereby reducing fuel consumption and operational costs [19]. Route optimization involves analyzing input data such as the location of bins, waste levels, and traffic conditions to determine the shortest path that covers all bins while minimizing fuel usage. This approach not only reduces costs but also lowers the environmental impact of waste collection operations [21].

VIII. CONCLUSION AND FUTURE SCOPE

Artificial intelligence is driving a radical change in solid waste management systems in the connotation of technological solutions to age-old inefficiencies. Traditional methods of operation, such as informal recovery and composting, may have been useful in the past, but they now fail to scale even if they are transformed on a logistical scale to suit the needs of modern cities. Artificial Intelligence is transforming the management of solid waste by delivering systematic, scalable, and sustainable solutions. Merging AI with Industry 4.0 technologies like IoT, robotics, and blockchain increases the efficiency of waste segregation, real-time monitoring, and optimized routing for collection. These technologies assist in resource recovery, minimizing landfill reliance, and decreasing greenhouse gas emissions. Though, the practical application of AI-based waste management has several advantages, it is plagued by issues like data privacy, which is a concern; and huge deployment expenditures. The efficiency of AI models also relies on the availability of data, computational power, as well as compatibility with current waste management infrastructure. There should be cost-efficient AI solutions in the future, improved real-time decision-making techniques, and policy coordination with smart waste management systems. Additionally, cooperation among governments, industries, and researchers will be necessary to standardize AI applications in waste management. By overcoming these challenges, AI has the potential to transform sustainable cities, lower environmental footprints, and drive a circular economy.. AI-enabled waste systems utilizing neural networks, predictive modeling, and real-time monitoring increase performance metrics, public health and preservation of the environment. This provides an invaluable platform for smart cities by ensuring better resource recovery, reduced greenhouse gas emissions, and better living standards in urban areas.

AI models that self-learn and adapt to dynamic waste streams are being developed to improve the efficiency of solid waste management. Development of waste-to-energy technology to reduce dependency on landfills and to generate renewable energy.

- 1) Enhanced Waste-to-Energy Systems: Further development of AI-driven technologies to efficiently convert waste into renewable energy.
- 2) Advanced Real-Time Monitoring: Expansion of IoT-enabled systems for real-time waste tracking and management across cities.
- 3) AI-Optimized Recycling Processes: Improvement in AI algorithms to increase recycling efficiency and reduce contamination in waste streams.
- 4) Global Policy Integration: Collaboration between governments and industries to standardize AI-driven waste management systems worldwide.

REFERENCES

- [1] D. Kannan, S. Khademolqorani, N. Janatyan, and S. Alavi, "Smart waste management 4.0: The transition from a systematic review to an integrated framework," *Waste Management*, vol. 174, pp. 1–14, 2024.

[2] M. Meena, M. Dotaniya, B. Meena, P. Rai, R. Antil, H. Meena, L. Meena, C. Dotaniya, V. S. Meena, A. Ghosh *et al.*, "Municipal solid waste: Opportunities, challenges and management policies in india: A review," *Waste Management Bulletin*, vol. 1, no. 1, pp. 4–18, 2023.

[3] W. Czekala, J. Drozdowski, and P. Łabiak, "Modern technologies for waste management: A review," *Applied Sciences*, vol. 13, no. 15, p. 8847, 2023.

[4] B. Fang, J. Yu, Z. Chen, A. I. Osman, M. Farghali, I. Ihara, E. H. Hamza, D. W. Rooney, and P.-S. Yap, "Artificial intelligence for waste management in smart cities: a review," *Environmental Chemistry Letters*, vol. 21, no. 4, pp. 1959–1989, 2023.

[5] A. G. Satav, S. Kubade, C. Amrutkar, G. Arya, and A. Pawar, "A state-of-the-art review on robotics in waste sorting: scope and challenges," *International Journal on Interactive Design and Manufacturing (IJIDeM)*, vol. 17, no. 6, pp. 2789–2806, 2023.

[6] D. B. Olawade, O. Fapohunda, O. Z. Wada, S. O. Usman, A. O. Ige, O. Ajisafe, and B. I. Oladapo, "Smart waste management: A paradigm shift enabled by artificial intelligence," *Waste Management Bulletin*, 2024.

[7] R. Ochoa-Barragán, A. d. C. Munguía-López, and J. M. Ponce-Ortega, "A hybrid machine learning-mathematical programming optimization approach for municipal solid waste management during the pandemic," *Environment, Development and Sustainability*, vol. 26, no. 7, pp. 17653–17672, 2024.

[8] S. Singh, R. Chhabra, and J. Arora, "A systematic review of waste management solutions using machine learning, internet of things and blockchain technologies: state-of-art, methodologies, and challenges," *Archives of Computational Methods in Engineering*, vol. 31, no. 3, pp. 1255–1276, 2024.

[9] M. Karthikeyan, T. Subashini, and R. Jebakumar, "Ssd based waste separation in smart garbage using augmented clustering nms," *Automated Software Engineering*, vol. 28, no. 2, p. 17, 2021.

[10] L. K. Venkiteela, "Status and challenges of solid waste management in tirupati city," *Materials Today: Proceedings*, vol. 33, pp. 470–474, 2020.

[11] Z. Ashkanani, R. Mohtar, S. Al-Enezi, P. K. Smith, S. Calabrese, X. Ma, and M. Abdullah, "Ai-assisted systematic review on remediation of contaminated soils with pahs and heavy metals," *Journal of Hazardous Materials*, p. 133813, 2024.

[12] V. Božić, "Artificial intelligence (ai) oriented waste management in hospital."

[13] G. Vinti, V. Bauza, T. Clasen, K. Medlicott, T. Tudor, C. Zurbrügg, and M. Vaccari, "Municipal solid waste management and adverse health outcomes: A systematic review," *International journal of environmental research and public health*, vol. 18, no. 8, p. 4331, 2021.

[14] M. Abdallah, M. A. Talib, S. Feroz, Q. Nasir, H. Abdalla, and B. Mahfood, "Artificial intelligence applications in solid waste management: A systematic research review," *Waste Management*, vol. 109, pp. 231–246, 2020.

[15] S. Shahab, M. Anjum, and M. S. Umar, "Deep learning applications in solid waste management: A deep literature review," *International Journal of Advanced Computer Science and Applications*, vol. 13, no. 3, 2022.

[16] J. Huang and D. D. Koroteev, "Artificial intelligence for planning of energy and waste management," *Sustainable Energy Technologies and Assessments*, vol. 47, p. 101426, 2021.

[17] R. Sarc, A. Curtis, L. Kandlbauer, K. Khodier, K. E. Lorber, and R. Pomberger, "Digitalisation and intelligent robotics in value chain of circular economy oriented waste management—a review," *Waste Management*, vol. 95, pp. 476–492, 2019.

[18] A. Xu, H. Chang, Y. Xu, R. Li, X. Li, and Y. Zhao, "Applying artificial neural networks (anns) to solve solid waste-related issues: A critical review," *Waste Management*, vol. 124, pp. 385–402, 2021.

[19] A. B. Jude, D. Singh, S. Islam, M. Jameel, S. Srivastava, B. Prabha, and P. R. Kshirsagar, "An artificial intelligence based predictive approach for smart waste management," *Wirel. Pers. Commun.*, vol. 123456789, 2021.

[20] S. V. Akram, R. Singh, A. Gehlot, M. Rashid, A. S. AlGhamdi, S. S. Alshamrani, and D. Prashar, "Role of wireless aided technologies in the solid waste management: A comprehensive review," *Sustainability*, vol. 13, no. 23, p. 13104, 2021.

[21] J. Jones, E. Harris, Y. Febriansah, A. Adiwijaya, and I. N. Hikam, "Ai for sustainable development: Applications in natural resource management, agriculture, and waste management," *International Transactions on Artificial Intelligence*, vol. 2, no. 2, pp. 143–149, 2024.

[22] A. K. Das, M. N. Islam, M. M. Billah, and A. Sarker, "Covid-19 pandemic and healthcare solid waste management strategy—a mini-review," *Science of the total environment*, vol. 778, p. 146220, 2021.