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Abstract. Pancreatic cancer is one of the most aggressive and lethal malignancies, with a five-year survival rate remaining 

alarmingly low due to late-stage diagnosis and limited treatment options. Early detection and accurate prognostic assessment are 

essential for improving patient outcomes, yet traditional diagnostic methods rely heavily on invasive procedures and subjective 

clinical assessments. Recent advances in artificial intelligence (AI) and machine learning (ML) have demonstrated significant 

potential in enhancing cancer detection and prediction through data-driven, automated approaches. However, existing AI models 

often focus on a single predictive task or require predefined task selection, limiting their adaptability in real-world clinical 

applications. This study aims to address these limitations by developing an intelligent system capable of automatically identifying 

and executing the appropriate predictive task—namely, susceptibility prediction, diagnosis, or survivability estimation—based on 

the input dataset. 

Keywords: Pancreatic cancer, Machine learning, Artificial intelligence, Susceptibility prediction, Diagnosis, Survivability 
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Introduction 

Pancreatic cancer remains one of the deadliest malignancies worldwide, with a five-year survival rate of less than 

10%. Despite significant advancements in molecular profiling and therapeutic interventions, early detection remains 

a formidable challenge, as symptoms often manifest in advanced stages. Additionally, the aggressive nature of 

pancreatic tumors and their resistance to conventional treatments further underscore the need for novel diagnostic 

and prognostic approaches[1]. In recent years, artificial intelligence (AI) and machine learning (ML) have emerged 

as transformative tools in oncology[3, 2, 4, 5], offering unprecedented capabilities in data-driven decision-

making[4]. AI-powered models have demonstrated remarkable potential in susceptibility prediction (identifying 

individuals at high risk based on genetic and clinical factors), early diagnosis (leveraging biomarker analysis for 

accurate detection)[6, 7], and survival prognosis (forecasting patient outcomes to tailor personalized treatment 

strategies). These advancements have paved the way for intelligent systems that can augment clinical expertise, 

reduce diagnostic latency[3], and enhance patient outcomes. This study presents the implementation of an AI-driven 

system designed to address three critical facets of pancreatic cancer management: risk susceptibility assessment, 

early diagnosis, and survival prediction. The proposed framework utilizes publicly available data to develop robust 

predictive models using machine learning algorithms. Specifically, artificial neural networks (ANNs), support vector 

machines (SVM), and XGBoost are employed, with the best-performing model selected for each task. The primary 

contributions of this work are threefold: 

 

1. A novel risk prediction model that integrates genetic predisposition, lifestyle factors, and clinical history to 

estimate an individual's susceptibility to pancreatic cancer. 

 

2. An AI-driven diagnostic tool that enhances early-stage detection using machine learning-based analysis of 

biomarker and clinical data. 

 

3. A survival analysis module employing advanced machine learning techniques to predict patient outcomes and 

optimize treatment planning. 



By synthesizing these three pillars—susceptibility assessment, early diagnosis, and survival prediction—this research 

highlights the transformative role of AI in pancreatic oncology. We demonstrate that intelligent models can not only 

augment current diagnostic frameworks but also potentially redefine personalized medicine, offering new avenues 

for early intervention and optimized therapeutic strategies. 

 

1. Databases description and variables selection 

 
The choice of variables in a dataset is critical to ensuring accurate predictions, meaningful insights, and clinically 

relevant results as shown in Table.1. In designing the dataset for our AI-driven pancreatic cancer system, we 

prioritized variables based on their predictive power, clinical relevance, and data availability. Below is a detailed  

explanation of why certain variables were included while others were excluded, and how these choices influence the 

analysis 

                 

                              Table 1: illustration of datasets variables 

 

 

 

1.1 Demographic and Lifestyle Factors 

Age, gender, smoking status, and family history are key risk factors for pancreatic cancer. Age and smoking increase 

susceptibility, while family history suggests genetic predisposition. Incorporating these factors enhances risk 

prediction and helps identify high-risk populations. 

 
1.2  Clinical and Pathological Features 
Tumor size, cancer stage, lymph node involvement, and differentiation are crucial for staging pancreatic cancer and 

guiding treatment. As key indicators of disease progression, they significantly impact prognosis, early diagnosis, and 

survival prediction models. 

 

1.3 Biomarkers and Laboratory Data 
Biomarkers such as CA 19-9, CEA, and glucose levels are vital for pancreatic cancer detection and assessment. CA 

19-9 is the primary biomarker, with elevated levels indicating disease burden, while glucose levels reflect the 

Patient 

cohort 
age             Grade Tumor Sample ID 

KR

AS 
CA19_9 

Surgical 

procedure 

Cohort1 
33 

Grade 2 - Moderately 

differentiated  

TCGA-2J-AAB1-01A           1 11,7    Whipple 

 

Cohort1 

81 

Grade 2 - Moderately 

differentiated  

TCGA-2J-AAB4-01A 1  distal 

pancreatectomy 

 

Cohort2 

      51 

Grade 3 - Poorly  

differentiated  

TCGA-2J-AAB6-01A 1 7 distal 

pancreatectomy 

 

Cohort2 
61 

Grade 2 - Moderately 

differentiated  

TCGA-2J-AAB8-01A 1 8 Whipple 

 

Cohort2 
62 

Grade 2 - Moderately 

differentiated  

TCGA-2J-AAB9-01A 1 9 Whipple 

 

Cohort2 
53 

Grade 2 - Moderately 

differentiated  

TCGA-2J-AABA-

01A 

0  Whipple 

 

Cohort2 

70 

Grade 2 - Moderately 

differentiated  

TCGA-2J-AABE-

01A 

1  distal 

pancreatectomy 

 



association between diabetes and pancreatic cancer. Integrating these biomarkers enhances diagnostic accuracy and 

aids in distinguishing benign from malignant cases. 

 

1.4 Genomic and Molecular Data 

KRAS and TP53 mutations are critical in pancreatic cancer, with KRAS mutations present in over 90% of cases and 

TP53 linked to aggressive tumor behavior. Incorporating genomic data enhances susceptibility modeling and enables 

personalized treatment strategies. 

 

1.5  Survival and Treatment Information 

Treatment type, survival time, and recurrence status are essential for predicting patient outcomes and evaluating 

treatment effectiveness. Integrating this data enables personalized prognostic models, aiding in the optimization of 

therapeutic strategies. 

 
2. Dataset Structure 
In the context of pancreatic cancer prediction and diagnosis, datasets typically contain a combination of qualitative 

(categorical) and quantitative (numerical) variables. Below is a structured breakdown of these variables, categorized 

into nominal, ordinal, discrete, and continuous types. 

 

2.1 Qualitative Variables  

Qualitative variables in pancreatic cancer analysis are categorized as nominal or ordinal. Nominal variables, such as 

gender, smoking status, tumor location, histological type, mutation presence, and family cancer history, have no 

inherent order. In contrast, ordinal variables, including cancer stage, pain severity, tumor differentiation, and 

performance status, follow a meaningful progression but with unequal intervals between categories. 

 

2.2 Quantitative Variables  

Quantitative variables in pancreatic cancer analysis are classified as discrete or continuous. Discrete variables, such 

as the number of affected lymph nodes, previous cancer diagnoses, age at diagnosis, and detected mutations, take 

specific integer values. Continuous variables, including tumor size, biomarker and glucose levels, survival time, and 

radiomic features, are measured on a scale with infinite possible values, allowing for precise assessment. 

 

The classification of variables into qualitative and quantitative is essential for appropriate data preprocessing and 

analysis. Qualitative variables such as gender, tumor location, and mutation presence were categorized as nominal 

because they represent distinct groups without inherent order. Ordinal variables like cancer stage and pain severity 

were classified separately since they follow a logical progression but lack equal intervals between categories. 

Quantitative variables, on the other hand, were divided into discrete (e.g., number of affected lymph nodes, age) and 

continuous (e.g., tumor size, CA 19-9 level, survival time) since they allow for meaningful numerical operations. 

This structuring impacts analysis by guiding preprocessing steps such as one-hot encoding for nominal variables, 

label encoding for ordinal ones, and scaling for continuous data. Additionally, transformations such as age binning 

(grouping ages into ranges) or biomarker ratio calculations (e.g., CA 19-9/CEA) were applied to enhance model 

interpretability and predictive power. Proper classification ensures that machine learning models receive 

appropriately formatted inputs, improving both accuracy and interpretability in pancreatic cancer risk prediction, 

diagnosis, and survival estimation. 

 

3. Data preprocessing 

First of all, during the data preprocessing stage, we performed thorough data cleaning to ensure high-quality inputs 

for analysis and modeling. This involved identifying and removing erroneous records, such as inconsistencies in 

patient demographics, unrealistic biomarker values, or missing key attributes that could compromise model 

performance. Additionally, we detected and eliminated duplicate entries to prevent bias and redundancy in training 

data. These steps were essential in improving data integrity, reducing noise, and enhancing the reliability of machine 

learning predictions for pancreatic cancer susceptibility, diagnosis, and survival estimation. 



 

 

 

3.1 Handling missing values  

To handle missing values, we applied mode imputation (replacing missing values with the most frequent category) in 

specific columns [8] instead of deleting entire records as represented in Figure.1. This approach was particularly 

suitable for categorical variables [9] (e.g., smoking status, tumor location) where missing values were relatively few, 

and removing rows could lead to unnecessary data loss[10]. Deleting records would have reduced the dataset size, 

potentially affecting model performance and generalizability. Mode imputation ensures that the dataset remains 

statistically representative, preserving critical patterns and maintaining sufficient data for training robust machine 

learning models. 
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              Fig.1. a. Missing values in dataset, b. Mode value 

 
 

3.2 Data encoding 

In the dataset, the only categorical variables present are either binary categorical variables or ordinal variables, 

ensuring a structured and meaningful representation of the data [11]. Binary categorical variables are those with only 

two possible values, such as smoking status (current smoker vs. non-smoker), family history of pancreatic cancer 

(yes vs. no), or mutation presence (KRAS mutation detected vs. not detected). On the other hand, ordinal variables 

exhibit a natural ranking, where the order conveys important clinical significance. Examples include cancer stage 

(Stage I, II, III, IV), tumor differentiation (well-differentiated, moderately differentiated, poorly differentiated), and 

performance status (fully active, restricted activity, unable to work). This classification ensures that each categorical 

feature is encoded in a way that preserves its inherent meaning while optimizing model interpretability and 

performance[11, 12, 13].Hence, we chose label encoding for both binary categorical variables and ordinal variables 

because it efficiently converts these features into a numerical format while preserving their inherent meaning[12, 11, 

14]. For binary variables, label encoding is the most straightforward approach, as it simply maps the two possible 

values to 0 and 1, ensuring compatibility with machine learning models without introducing unnecessary complexity. 

For ordinal variables, label encoding is also appropriate because it maintains the natural order of the categories (e.g., 

cancer stages: Stage I < Stage II < Stage III < Stage IV). Unlike one-hot encoding, which increases dimensionality, 

label encoding keeps the dataset compact and computationally efficient while retaining essential ordinal 

relationships. 

  

 

 

 



 

 

3.3 Handling  imbalanced  data 

 

The target variable in this intelligent system is structured into three distinct binary classifications [19], each 

consisting of two classes. For susceptibility, individuals are classified as either low risk or high risk for developing 

cancer in the future. In diagnosis, patients are identified as either cancerous or non-cancerous. Lastly, survivability 

classification determines whether a patient has survived or not survived for one year. This well-defined two-class 

distribution across all three tasks ensures a straightforward classification framework, facilitating precise model 

training and performance evaluation. In the context of our intelligent system, the use of SMOTE (Synthetic Minority 

Over-sampling Technique) was essential to address class imbalance as highlighted in Figure 2, which can 

significantly impact model performance [15, 16]. When one class is underrepresented, the model tends to favor the 

majority class, leading to biased predictions and reduced generalization [17,18]. SMOTE mitigates this issue by 

generating synthetic instances of the minority class rather than simply duplicating existing ones, thus preserving data 

diversity [17,18]. By balancing the class distribution as observed in Figure 3, SMOTE enhances the model ability to 

learn meaningful patterns from both classes, improving classification accuracy and robustness while reducing the 

risk of overfitting to the dominant class.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Data split 
 

A critical step in the machine learning workflow is dividing the dataset into training and testing sets, as illustrated in 

Figures 4. This process is essential to ensure the model ability to generalize to unseen data. The training set enables 

the model to learn underlying patterns, while the testing set assesses its performance on new inputs, helping prevent 

overfitting. In this study, we utilize three distinct datasets, each dedicated to a specific predictive task: diagnosis, 

susceptibility, and survivability. To achieve reliable predictions across these tasks, each dataset is systematically split 

into training and testing subsets using Python train-test split function. 

 

 

 

 

 

 

    Fig.2.  diagnosis classes distribution in python 

                           Fig.3: classes distribution after applying SMOTE in Python. 
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5. Model Selection and Building for Susceptibility, Diagnosis, and Survivability 

Predictions  
 

The intelligent system for pancreatic cancer prediction, diagnosis, and survivability operates with a streamlined and 

automated approach, minimizing user intervention while maximizing efficiency. The user role is straightforward: 

they simply provide the dataset corresponding to the specific task-whether it involves predicting cancer 

susceptibility, diagnosing a patient, or assessing one-year survival likelihood. Once the dataset is input, the system 

takes full control, evaluating multiple machine learning algorithms to determine the most suitable model for the 

given task. This evaluation is based on predefined performance metrics, ensuring that the selected algorithm delivers 

optimal accuracy and reliability. By automating the model selection process, the system eliminates the need for 

manual comparisons and technical expertise, making advanced predictive analytics accessible to a wider range of 

users. Ultimately, this approach enhances precision in medical decision-making [99] while reducing the complexity 

traditionally associated with machine learning model development. 

 

5.1 Types of Algorithms Used 

 

To implement an intelligent system capable of performing pancreatic cancer risk prediction, diagnosis, and 

survivability estimation, we employed a hybrid machine learning approach combining Support Vector Machines 

(SVM), Artificial Neural Networks (ANN), and eXtreme Gradient Boosting (XGBoost). The system is designed to 

allow users to input the appropriate dataset, after which the model dynamically adapts to perform the selected task 

whether cancer risk assessment, early-stage detection, or survival prognosis. 

 

Support Vector Machine (SVM) 

 

SVM was chosen for its robust classification capabilities, particularly in binary and multiclass prediction tasks. 

Given the high-dimensional nature of medical data, SVM efficiently separates cancerous and non-cancerous cases by 

maximizing the margin between classes using hyperplane optimization. This makes it particularly effective in 

diagnosing pancreatic cancer based on clinical and biomarker data. A Radial Basis Function (RBF) kernel was used 

to capture complex, nonlinear relationships inherent in patient data. 

 

Artificial Neural Networks (ANN) 

 

ANNs were leveraged to model intricate patterns within multimodal datasets, particularly for pancreatic cancer 

diagnosis and survival prediction. The ANN architecture consists of multiple hidden layers, utilizing ReLU 

activation functions for nonlinear transformations and softmax/sigmoid activations for classification outputs. The 

network was trained using backpropagation and stochastic gradient descent (SGD), ensuring adaptive learning from 

diverse clinical, and genetic features. 

 

eXtreme Gradient Boosting (XGBoost) 

 

XGBoost was employed for its high predictive accuracy and efficiency, particularly in structured clinical datasets. Its 

gradient boosting framework iteratively refines weak learners, making it ideal for susceptibility prediction and 

survival analysis. By handling missing values, feature importance ranking, and regularization, XGBoost provides 

interpretable predictions, crucial for medical decision-making. The model was fine-tuned using hyperparameter 

optimization techniques, such as learning rate adjustment and early stopping, to mitigate overfitting and enhance 

generalization. 

 

By integrating these three complementary models, our system offers a flexible and highly accurate predictive 

framework tailored for pancreatic cancer risk assessment, diagnosis, and survival estimation, ultimately contributing 

to personalized medicine and improved patient outcomes. 



 

5.2  Architecture and Frameworks 

 

To implement our AI-driven pancreatic cancer prediction, diagnosis, and survivability system, we utilized Python 

3.11 as the core programming language due to its extensive ecosystem of machine learning libraries, efficient 

memory management, and robust scientific computing capabilities. The system was built using a combination of 

specialized frameworks, each playing a crucial role in model development, data visualization, and performance 

optimization. 

 

We employed Scikit-learn, a widely used machine learning library, for implementing classical models such as 

Support Vector Machines (SVM) and eXtreme Gradient Boosting (XGBoost). Scikit-learn was particularly valuable 

for data preprocessing, feature selection, and hyperparameter tuning, ensuring optimal model performance. 

 

For deep learning components, including Artificial Neural Networks (ANNs), we integrated TensorFlow, an 

industry-standard framework for neural network training and optimization. TensorFlow enabled efficient GPU-

accelerated computations, allowing us to process large-scale imaging and genomic datasets with high-speed tensor 

operations. The Keras API, built on top of TensorFlow, was used to construct and fine-tune ANNs  architectures with 

flexible layer configurations. 

 

To enhance interpretability and exploratory data analysis, we leveraged Matplotlib and Seaborn for advanced data 

visualization. These libraries facilitated the generation of correlation heatmaps and diagnostic performance plots, 

aiding in both model evaluation and medical decision-making. 

 

By integrating these powerful frameworks, we ensured that our system was scalable, computationally efficient, and 

adaptable to different predictive tasks. The modular architecture allows seamless integration of additional models or 

datasets, making it a versatile tool for pancreatic cancer research and clinical applications. 

 

5.3 Validation and Evaluation 
 

To rigorously assess the performance of our AI-driven system for pancreatic cancer prediction, diagnosis, and 

survivability estimation, we employed a suite of well-established evaluation metrics. Accuracy was used to measure 

the overall correctness of predictions, while precision and recall provided insights into the model's ability to correctly 

identify cancer cases while minimizing false positives and false negatives. The F1-score, a harmonic mean of 

precision and recall, ensured a balanced evaluation in scenarios with class imbalances. Additionally, the ROC-AUC 

(Receiver Operating Characteristic - Area Under the Curve) metric was used to quantify the model discriminative 

power, particularly in distinguishing between malignant and benign cases. This comprehensive validation framework 

ensured robustness, reliability, and clinical applicability of our predictive models. 

 

6. Results 
This section presents the evaluation of our AI-driven system through model performance. We first assess the 

predictive accuracy of the implemented algorithms using various metrics. The performance of our AI-driven system 

was evaluated for the three key tasks: pancreatic cancer susceptibility prediction, diagnosis, and survivability 

estimation. Each model was assessed using multiple metrics, including accuracy, precision, recall, F1-score, and 

ROC-AUC, to ensure a comprehensive evaluation of predictive reliability and clinical applicability. 

 

 

 

 

 



 

6.1 Pancreatic Cancer Susceptibility Prediction 

 

For predicting an individual risk of developing pancreatic cancer XGBoost has been chosen among others, which 

demonstrated high efficiency in handling structured clinical and genetic data. The model achieved an accuracy of 

72.2%, with a precision of 74.07%, a recall of 71.4%, and an F1-score of 73.1%. The ROC-AUC score of 0.85 

indicates strong discriminative capability, effectively distinguishing high-risk individuals from those with lower 

susceptibility, as shown in Figure 5. 

 

 

 

 

 

 

 

 

 

             

 

 

6.2  Pancreatic Cancer Diagnosis 

 

For this task of the model, the ANN has been selected such that the model exhibited an accuracy of 99.2%, a 

precision of 99.9%, a recall of 98.2%, and an F1-score of 99.1%, demonstrating strong potential for early-stage 

cancer detection, as indicated in Figure 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.3  Pancreatic Cancer Survivability Estimation 

 

For survival prediction, a Support Vector Machine (SVM) model has been picked up such that the latter is trained on 

longitudinal clinical data, treatment responses, and disease progression indicators. The model achieved an accuracy 

of 88.9%, a precision of 91.4%, a recall of 88.9%, and an F1-score of 90.1%. The ROC-AUC score of 91.6% 

highlights the model ability to provide reliable survival predictions, aiding in personalized treatment planning, as 

observed in Figure 7. 

 

 

 

 

Fig.5.  The system best classifier for susceptibility. 

        Fig.6.  The system best classifier for diagnosis. 



 

 

 

 

 

 

 

 

 

 

 

 

 

Overall, these results demonstrate that the implemented AI models deliver robust and clinically relevant performance 

across all three predictive tasks. This validates their potential for integration into real-world medical decision-making 

processes, enhancing early detection, risk assessment, and patient prognosis in pancreatic cancer care. 

 

7. Discussion 
This section analyses the performance, strengths, and limitations of our AI-driven system for pancreatic cancer . We 

compare the effectiveness of SVM, ANN, and XGBoost, highlighting their contributions and potential area. 

 

7.1 Comparison of SVM, ANN, and XGBoost 

 

Each of the three machine learning models was evaluated for a specific predictive task, with XGBoost chosen for 

susceptibility prediction, ANN for diagnosis, and SVM for survivability estimation, based on their respective 

performance metrics. 

 

XGBoost was chosen for pancreatic cancer risk assessment due to its efficiency in handling structured clinical and 

genetic data, achieving 72.2% accuracy, 74.07% precision, 71.4% recall, and a 73.1% F1-score, with a strong ROC-

AUC of 0.85, demonstrating its reliability in identifying high-risk individuals. Its strength lies in managing 

imbalanced datasets and extracting patterns from complex feature spaces. ANN exhibited the highest performance in 

pancreatic cancer detection, with 99.2% accuracy, 99.9% precision, 98.2% recall, and a 99.1% F1-score, highlighting 

its capability in learning complex relationships within medical and clinical datasets. However, its black-box nature 

poses challenges in clinical validation. SVM was optimal for survivability estimation, achieving 88.9% accuracy, 

91.4% precision, 88.9% recall, and a 90.1% F1-score, with a strong ROC-AUC of 91.6%, excelling in handling high-

dimensional clinical datasets, including longitudinal patient data and treatment responses. Despite its strong 

predictive power, SVM's computational demands may limit real-time applications. 

 

7.2 Advantages of the Proposed System 

 

The proposed system introduces a novel approach to pancreatic cancer prediction, diagnosis, and survivability 

estimation by automating task identification based on the provided dataset, eliminating the need for manual selection. 

Unlike traditional methods that rely on a single algorithm, our framework simultaneously evaluates SVM, ANN, and 

XGBoost, selecting the most accurate model based on precision, recall, F1-score, accuracy, and ROC-AUC. This 

multi-model strategy ensures robust and reliable predictions, reducing bias associated with single-model approaches. 

Additionally, the system’s scalability and modularity allow seamless adaptation to new datasets, enhancing its 

applicability across different clinical settings. By integrating a comprehensive performance assessment, our approach 

provides a more balanced and data-driven evaluation, making it a powerful tool for precision oncology. 

 

 

Fig.7.  The system best classifier for survivability. 



 

 

7.3  Limitations and Areas for Improvement 

 

Despite its strengths, the proposed system faces certain limitations. Its performance is highly dependent on dataset 

quality, with issues like data imbalance and missing values potentially affecting model generalization. Additionally, 

running multiple algorithms simultaneously increases computational complexity, which may limit real-time clinical 

deployment. While ANN delivers strong predictive accuracy, its lack of interpretability compared to tree-based 

models like XGBoost poses challenges for clinical validation and decision-making. Furthermore, the system requires 

extensive external validation on diverse, independent datasets to ensure robustness across different populations. 

Future enhancements could include optimizing model selection pipelines, and implementing data augmentation 

strategies to improve accuracy, efficiency, and clinical applicability. 

 

8. Conclusion 
 

This study introduced an intelligent system for pancreatic cancer susceptibility prediction, diagnosis, and 

survivability estimation, integrating Support Vector Machines (SVM), Artificial Neural Networks (ANN), and 

eXtreme Gradient Boosting (XGBoost). By automating task identification based on the provided dataset and 

systematically selecting the best-performing model through multiple evaluation metrics (accuracy, precision, recall, 

F1-score, and ROC-AUC), the proposed system ensures reliable and data-driven decision-making. Its scalability and 

adaptability make it a valuable tool for clinical applications and personalized medicine. Future work will focus on 

enhancing interpretability through explainable AI (XAI), optimizing computational efficiency for real-time 

deployment, and expanding dataset diversity to improve generalization across different patient populations. 
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