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Abstract. The rapid expansion of fraudulent behavior concerning the
cryptocurrency ecosystem has underscored the necessity for intelligent
detection frameworks. This paper focuses on a comparative review of
modern approaches organized into three methodological categories: cutting-
edge AI frameworks, traditional ML methods, and non-ML or heuris-
tic approaches. In analyzing sixteen contributions, we assess the mul-
tidisciplinary gaps and challenges of each class in terms of model in-
terpretability, data imbalance, high computational cost, overfitting, in-
sufficient empirical evaluation, and generalizability to novel instances
of fraud. To overcome these challenges, we propose the use of explain-
able AI tools such as SHAP and GNNExplainer, along with hybrid
detection pipelines—combining deep learning, traditional models, and
heuristic knowledge—data generation through transfer learning, and self-
supervised frameworks. We also highlight the need for modular designs
focused on system scalability and evolvability, as well as the integration of
on-chain and off-chain data to improve situational awareness. Given the
complexity of cryptocurrency fraud, we advocate for strategically adapt-
able and explainable detection frameworks that enhance performance
and interpretability in the ever-changing environment of decentralized
blockchain systems.

Keywords: Cryptocurrency Fraud · Artificial Intelligence · Machine
Learning · Deep Learning · Graph Neural Networks · Hybrid Method-
ologies · Explainable AI · Heuristic Approaches.

1 Introduction
The cryptocurrency world has extremely enhanced and changed financial systems
on a global scale. Bitcoin and Ethereum passed conventional banking systems,
allowing new forms of online business to flourish by providing decentralization,
transparency, and transactions across borders. However, pseudonymity, lack of
central supervision, and immutability have also made room for many illegit-
imate activities [1]. Cryptocurrency-based fraud is on the rise and becoming
increasingly sophisticated with money laundering, ponzi schemes, pump-and-
dump schemes, phishing, smart contract hacking, and transaction hiding. The
enormous amount of available information, the borderless nature of transactions,
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the ever-changing user behaviors, and the immense scale of operations make de-
tecting and preventing these fraudulent activities extremely challenging [2]. To
address these issues, many initiatives have started using artificial intelligence
(AI) and machine learning (ML) technologies that attempt to identify indicators
of potentially fraudulent activities. Recent works have looked at a wide range of
approaches—classical supervised learning models like decision trees and support
vector machines to more sophisticated architectures like deep neural networks,
graph neural networks, and hybrid ensembles [3]. On the other hand, several
heuristic or conceptual models have also been proposed, often based on domain-
specific rules or indicators derived from the network. Although the results in this
field are promising, there are still many gaps, such as the lack of standardized
datasets, low model explainability, poor real-time detection, and inconsistent
evaluation metrics.
The goal of this paper is to systematically evaluate and analyze sixteen selected
and impactful research publications directed towards fraud detection within cryp-
tocurrency using AI and its associated technologies. This paper is unique in
its categorization of crime studies into three primary groups of detection ap-
proaches: advanced AI-based methods, classical machine learning techniques,
and non-ML or heuristic frameworks, with less attention paid to the specific
analytical models employed. Each selected article is analyzed along nine key cri-
teria: (1) the type of cryptocurrency studied, (2) the type of fraud addressed,
(3) the datasets used, (4) the methodological approach, (5) the AI or non-AI
algorithms employed, (6) the performance metrics used, (7) real-time detection
capabilities, (8) explainability of the models, and (9) the main limitations and
challenges identified.
Our comparative analysis reveals several key findings. First, while advanced
AI techniques often outperform classical models in terms of accuracy, they fre-
quently lack transparency and are difficult to interpret, which poses a barrier to
their adoption in regulatory contexts. Second, real-time fraud detection remains
underdeveloped in most studies, despite being critical in practical applications.
Third, there is a clear shortage of benchmark datasets and reproducible experi-
mental settings, making it difficult to compare models fairly. Finally, hybrid and
ensemble approaches appear to be a promising direction, balancing performance
and generalization, but they often come with increased computational complex-
ity. The remainder of this article is structured as follows. Section 2 describes the
theoretical foundations of cryptocurrencies, fraud typologies, and AI-based de-
tection. Section 3 presents the proposed classification framework and categorizes
detection approaches identified in the literature. Section 4 compares the selected
papers based on nine evaluation criteria, highlighting key methodological trends.
Section 5.1discusses major challenges and 5.2 potential solution. Finally, Section
6 concludes with directions for future research.

2 Background on Crypto & Fraud Detection
Cryptocurrencies, such as Bitcoin and Ethereum, are digital currencies secured
through cryptography. Satoshi Nakamoto released Bitcoin in 2009, whose value
has increased through the years. Recognizable names for other cryptocurrencies
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include Ripple, Litecoin, and many others identified as altcoins [1]. Cryptocur-
rencies employ blockchains, which are decentralized digital ledgers that record
transactions made from multiple computers. Blockchains ensure all transactions
are safeguarded against modification or deletion, as well as remove the need
for a trusted intermediary to oversee exchanges. The decentralized nature of
cryptocurrencies and the absence of a central regulatory authority increase their
vulnerability to illicit activities, including fraud. Their intrinsic characteristics,
such as user anonymity and the irreversibility of transactions, also make them a
fertile ground for malicious behavior [2], mainly:

– Ponzi Schemes: Profitable opportunities that are bound to fail. Returns stem
from withdrawing new investors’ contributions.

– Pump-and-Dump Schemes: Scams meant to drastically increase and decrease
share prices of low-activity securities.

– Phishing and Social Engineering : The act of obtaining confidential informa-
tion to access an account.

– Money Laundering and Illicit Transactions: Using crypto to disguise the
origin of illegal funds.

– Smart Contract Exploits: Exploiting poorly written or malicious contracts
in platforms like Ethereum.

Artificial intelligence (AI), particularly machine learning (ML), is proving in-
valuable in identifying cryptocurrency fraud. However, the speed and volatility
of blockchain data make traditional systems, based on predefined rules, unsuit-
able. These AI technologies [4] are capable of:

– Detection of unusual and potentially suspicious transactions.
– Behavioral analysis to anticipate fraudulent activity.
– Adaptation to emerging and evolving fraud techniques.
– Interpretable justification of decisions using Explainable AI (XAI).

A systematic review of sixteen academic studies on AI-powered cryptocurrency
fraud detection was conducted. Selection criteria included demonstrated rele-
vance to cryptocurrency fraud, application of AI or machine learning methods,
and transparent reporting of datasets, models, and evaluations. The selected ar-
ticles covered different years, regions, and fraud types, ensuring a diverse and
representative basis for analysis. In order to better understand the technological
maturity and operational efficiency of automated fraud detection systems, we
propose to classify the selected articles into three categories according to the
nature and complexity of the techniques used and of their integration with AI:

– Class 1—Advanced AI-based approaches
– Class 2—Classical machine learning models
– Class 3—Conceptual, rule-based, or heuristic approaches

This classification provides a structured framework to evaluate the academic
significance, technical advancement, and practical relevance of each approach.
By distinguishing between advanced, classical, and non-AI-based methods, it
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reflects the progression of fraud detection techniques in terms of algorithmic
complexity and AI integration. It also helps identify current limitations and guide
the selection of approaches best suited to emerging challenges, such as real-time
detection, adaptability to evolving fraud strategies, and interpretability.

3 Classification & Analysis Of Cryptocurrency Fraud
The specific and subtle differences between the three categories of methods iden-
tified for detecting cryptocurrency fraud lie in their algorithmic complexity, flex-
ibility, and overall practicality.

Class 1—Advanced AI-Based Approaches
The first class exploited advanced AI techniques, including deep learning, graph
models, and ensemble methods, generally incorporated with explainability tools
to address the complexity and dynamism of blockchain data. Kamisetty et al. [5]
applied CNNs and RNNs to model cryptocurrency transactions, while Shayegan
et al. [6] used graph-based anomaly detection to capture fraud via relationships
between nodes. Elmougy and Liu [7] enhanced graphical models with XAI to
increase transparency. Ensemble methods, as employed byNayyer et al. [8], com-
bined multiple classifiers and SHAP to obtain robust and interpretable predic-
tions. Finally, Walavalkar et al. [9] integrated token-pattern mining and isolation
forests with classical machine learning to target Ethereum-specific anomalies.
These studies presented the latest developments and techniques used to detect
fraud in cryptocurrency and explained how the combination of advanced AI al-
gorithms and interpretability could produce effective and innovative solutions.
Table 1 summarizes these contributions and the specific techniques applied in
each category.

Year Article Techniques Used
2021 Kamisetty et al. [5] Deep Learning (CNN, RNN)
2022 Shayegan et al. [6] Graph-based anomaly detection
2023 Elmougy and Liu [7] Graph ML, Explainability (XAI)
2023 Nayyer et al. [8] Ensemble stacking, SHAP
2024 Walavalkar et al. [9] ML, Token patterns, Isolation Forest
Table 1. Deep Learning and Graph AI-Based Techniques in Class 1.

Class 2—Classical Machine Learning Approaches
The second class focused on traditional machine learning approaches, which in-
cluded algorithms such as random forest (RF), support vector machines (SVM),
k-nearest neighbors (KNN), and boosting methods like XGBoost and AdaBoost.
These techniques were computationally effective and comparatively interpretable,
making them useful for practical applications. Bartoletti et al. [10] employed RF
and KNN algorithms to detect Ponzi schemes on the Ethereum blockchain, while
Ostapowicz and Żbikowski [11] applied RF and SVM to classify fraudulent be-
haviors based on transaction patterns. Boosting techniques were also utilized
in Ashfaq et al. [12] andTripathy et al. [4], showing improved accuracy on im-
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balanced datasets. In the more recent study, Kumari [13] combined RF, SVM,
and decision trees to identify Bitcoin fraud. Although effective on structured
datasets, these models often struggled to generalize emerging fraud patterns due
to their dependence on static features. Table 2 presents the main studies and
techniques associated with this class.

Year Article Techniques Used
2018 Bartoletti et al. [10] Random Forest (RF), K-Nearest Neighbors (KNN)
2019 Ostapowicz and Żbikowski [11] RF, Support Vector Machine (SVM)
2022 Ashfaq et al. [12] XGBoost, RF
2022 Anthony et al. [14] RF, KNN, Stochastic Gradient Descent
2024 Tripathy et al. [4] AdaBoost, XGBoost
2025 Kumari [13] RF, SVM, Decision Tree

Table 2. Standard Machine Learning Techniques used in Class 2.

Class 3—Non-ML, Conceptual, or Heuristic Approaches
The third class involved approaches that did not rely primarily on machine
learning. They relied on rule-based systems, heuristics, simulation, or theoret-
ical models often grounded in domain expertise. Chen et al. [15] proposed a
rule-based classifier for identifying Ponzi schemes using predefined transaction
patterns while La Morgia et al. [16] designed a heuristic algorithm to detect
pump-and-dump activities in real time. Likewise, Aponte-Novoa et al. [17] em-
ployed game-theoretical simulations to analyze 51% attacks and Bello et al. [18]
introduced a conceptual framework for fraud detection without relying on data-
driven modeling. Though Bartoletti et al. [2] included partial ML elements, their
contribution remained largely taxonomic and conceptual. While such models
offered valuable insights and interpretable frameworks, they lacked scalability,
adaptability, and predictive accuracy, especially in dynamic environments like
cryptocurrency markets. Table 3 summarizes this class studies and techniques.

Year Article Techniques used
2018 Chen et al. [15] Rule-based classification
2020 La Morgia et al. [16] Real-time detection algorithm heuristic
2021 Bartoletti et al. [2] Taxonomy + partial ML
2021 Aponte-Novoa et al. [17] Game theory (51% attack)
2024 Bello et al. [18] Conceptual framework

Table 3. Rule-Based and Simulation Techniques in Class 3.

This new framework provides a useful map for exploring the complex field of
cryptocurrency fraud detection. By classifying the papers into three broad cat-
egories, we were able to highlight the strengths and weaknesses of each ap-
proach. Advanced AI methods typically adapt quickly and deliver impressive
performance, but they’re more like black boxes. Traditional machine learning
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falls somewhere in between, offering good speed and clearer logic, while heuris-
tic methods remain simple and apply clear rules, even if they rarely evolve.
The following sections build on this classification by exploring the most difficult
challenges and unexplored questions still facing scientists and practitioners.

4 Comparison & Discussion
Now, we conduct a comparative analysis of sixteen selected studies on AI-driven
cryptocurrency fraud detection. This comparison sheds light on recurring chal-
lenges and emerging solutions across the studied literature.

4.1 Comparison
First, this section presents a comparative overview of the selected studies on
cryptocurrency fraud detection, focusing on their research scope and practical
contributions. A comparison is given in Table 4 below, considering nine criteria:
Type of Fraud, Cryptocurrency, Dataset Used, Methodologies, Algorithms Ap-
plied, Evaluation Metrics, Real-Time Detection, Explainability, and Limitations
Identified.

– Type of Fraud: What type of fraud is analyzed? (Ponzi, pump-and-dump,
ransomware, phishing, etc.)

– Cryptocurrency: Which cryptocurrency ecosystem is used? (Bitcoin, Ethereum,
others crypto, smart contracts, etc.)

– Dataset Used: real, simulated, labeled, or enriched dataset used? Is it public?
– Methodologies: What methods are applied? (Machine learning, graph-based

models, blockchain integration, boosting, etc.)
– Algorithms Applied: Which ML algorithms are employed? (Random Forest,

SVM, XGBoost, LSTM, etc.)
– Evaluation Metrics: Which metrics are reported? (Accuracy, Precision, Re-

call, F1-score, ROC-AUC, etc.)
– Real-Time Detection: Does the approach allow real-time fraud detection?

(Yes/No).
– Explainability: Are the model results interpretable or explained? (explainable

AI techniques like feature importance and visualization).
– Limitations: What limitations are acknowledged? (dataset bias, generaliza-

tion issues, real-time constraints, etc.)

Building on this comparison, we open a reflective discussion of broader im-
plications and methodological perspectives.

4.2 Discussion
Second, the following section examines the results in light of the defined eval-
uation criteria. The objective is to highlight the main trends, strengths, and
limitations of the literature, thus providing an overview of the current landscape
and prospects of AI-based approaches to cryptocurrency fraud detection.

Cryptocurrency Focus The analyzed studies cover a wide range of blockchain
platforms. Bitcoin remains the most frequently investigated cryptocurrency, as
(Bartoletti et al. [10], Kamisetty et al. [5], Elmougy and Liu [7]), owing to its
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Table 4. A Comparison of the Studied Cryptocurrency Fraud Detection Techniques

Article Year Crypto Fraud Type Data Type Methodologies Algorithms Metrics Real-Time Explainability Limitations
Chen
et al. [15]

2018 Ethereum
Smart
Contract

Ponzi schemes
via smart
contracts

Labeled
smart
contracts

Supervised ML;
On-chain behavior
analysis

Rule-based
classification

Detection
rate; False
positive rate

No Partially
(Feature
selection)

Scalability limits;
lack learning
component; static
and offline

Bartoletti
et al. [10]

2018 Bitcoin Ponzi schemes Labeled
dataset of
Ponzi

Supervised ML;
On-chain behavior
analysis (features)

Decision Tree,
Random Forest,
k-Nearest
Neighbors

Precision,
Recall,
F1-score

No Partially
(Feature
importance
analysis)

Limited
generalization;
dataset limited; no
real-time
capability

Ostapowicz
and
Żbikowski
[11]

2019 Ethereum Account-level
fraud (scams,
phishing, Ponzi)

Labeled
dataset of
300K+
Ethereum
addresses

Supervised ML,
Feature
engineering from
on-chain data

Random Forest,
XGBoost, SVM,
k-NN, MLP

Accuracy,
Precision,
Recall,
F1-score

No Partially
(SHAP, Feature
importance)

Class imbalance;
no real-time
adaptation; no
off-chain data;
potential label
noise

La Morgia
et al. [16]

2020 Various
(Binance,
YoBit )

Pump and dump
schemes

Real-time
market data
(buy orders)

Real-time
detection
algorithm based on
market behavior

Custom real-time
detection
algorithm
(non-ML)

Detection
accuracy,
F1-score,
Detection
time

Yes Partially
(behavioral
signal
detection)

Only observed
pumps; no ML
generalization; no
explainability

Bartoletti
et al. [2]

2021 General
cryptocur-
rencies

Multi-type scams
(phishing, Ponzi,
ransomware,
hybrid)

Address-
reported
scams,
URL-reported
scams from
public sources

Literature review;
Taxonomy
creation;
Supervised ML
classification

Multi-label
classifier
(unspecified
algorithm)

Precision,
Recall,
F1-score

No Partially
(taxonomy-
based
classification)

Incomplete data,
no standard
taxonomy, poor
real-time use

Kamisetty
et al. [5]

2021 Bitcoin Various types
(double-
spending,
phishing,
laundering)

General
Bitcoin
transaction
data

Deep learning
models; feature
extraction

ANN, CNN,
RNN,
Autoencoders

Precision,
Recall,
F1-score

Partially
(real-time
detection
potential)

No (focus on
model
performance,
limited
explainability)

No real data, weak
validation, no
interpretability, no
implementation

Aponte-
Novoa
et al. [17]

2023 Bitcoin 51% attack
(selfish mining)

Simulated
data on
mining
behavior

Theoretical
modeling,
Simulation-based
study of mining
strategies

Game theory
models, mining
strategy analysis
(selfish)

Theoretical
profit ratio,
attack success
rate
(simulation)

No Lacks theory
No XAI tools

Idealized setup;
incomplete
network modeling;
no real-world tests

Anthony
et al. [14]

2022 Ethereum Anomaly
detection
(general fraud
detection)

Ethereum
transaction
records
(Blockchair
dataset)

Supervised
ML-based anomaly
detection

Random Forest,
KNN, SGD,
GaussianNB

Accuracy,
Precision,
Recall,
F1-score

No Partially
(feature-based
decision
boundaries)

Offline only; no
real-time or
cross-chain
validation

Ashfaq
et al. [12]

2022 Bitcoin Transactions
fraud (double-
spending, Sybil
attacks)

Synthetic,
legitimate
and
fraudulent
patterns

Supervised ML +
Blockchain
integration (smart
contracts)

XGBoost,
Random Forest

Accuracy,
False Positive
Rate, AUC

Yes Partially (via
smart contract
security
analysis)

Computational
complexity; no
real-time
detection;
Synthetic data

Shayegan
et al. [6]

2022 Bitcoin Crypto wallet
fraud (collective
anomaly
detection)

Bitcoin
transaction
graph
(blockchain
data)

Graph-based
anomaly detection;
unsupervised
clustering

DBSCAN,
K-means

Precision,
Recall,
Detection
rate

No Limited (no
XAI, black-box
clustering
results)

No labeled
validation, poor
scalability, no
real-time
deployment.

Elmougy
and Liu
[7]

2023 Bitcoin Financial fraud,
Anti-money
laundering
(AML) behaviors

Elliptic++,
203K
transactions

Graph-based ML,
Explainable AI

Random Forest,
XGBoost,
LSTM, Graph
Analytics

Precision,
F1-score,
Recall

No Yes (via graph
structure and
feature
attribution)

Class imbalance;
lack of real-time
detection; limited
off-chain context

Nayyer
et al. [8]

2023 Bitcoin Fraudulent
Transactions

Labeled
dataset of
Bitcoin
transactions

Supervised ML,
Stacking,
ADASYN, Tuning

Decision Tree,
RF, Naive Bayes,
KNN, Logistic
Regression

Accuracy,
Recall,
F1-score,
AUC-ROC

No Partially (via
SHAP feature
explanations)

Labeled datasets;
no real-time
validation; limited
scalability

Tripathy
et al. [4]

2024 Ethereum Transaction
fraud (money
laundering, illicit
services)

Labeled
dataset of
Ethereum
transactions

Supervised ML
with feature
engineering

Logistic
Regression,
Random Forest,
KNN, AdaBoost,
XGBoost

Accuracy,
Precision,
Recall,
F1-score

No No no real-time
detection; lacks
off-chain context;
overfitting; false
positives

Walavalkar
et al. [9]

2024 Ethereum Token-based
fraud (scams, rug
pulls, illicit
transfers)

Ethereum
token
(Etherscan
API)

Token behavior
analysis, ML
classification,
Graph-based
anomaly detection

Random Forest,
XGBoost,
DBSCAN,
Isolation Forest

Precision,
Recall,
F1-score,
Accuracy

No Partial (feature
importance,
token pattern
insights)

Sparse labels;
scaling issues;
ERC-20 scope;
adversarial risk

Bello
et al. [18]

2024 General
Cryp-
tocurren-
cies

General financial
fraud
(unspecified)

Conceptual
model (no
empirical
dataset)

Conceptual
framework
combining ML and
blockchain

Logistic
Regression,
Neural Networks,
Clustering

Theoretical
only (no
empirical
metrics)

Yes (con-
ceptual)

Framework
only no
validation

No real data, no
experiments, no
scalability
evaluation.

Kumari
[13]

2025 Bitcoin Scam detection,
Market
manipulation

Dataset of
Bitcoin wallet
transactions
in USA

Scam detection via
supervised ML and
behavior modeling

Random Forest,
SVM, Decision
Tree, Logistic
Regression

Accuracy,
Precision,
Recall,
F1-score

No Partial (feature
importance,
behavior-
based)

Data-scarce; not
real-time; No
generalization to
trends

widespread adoption and the public availability of its transaction data. Ethereum
is also prominent in fraud studies, especially concerning smart contract frauds
and token-based schemes. Fewer studies adopt a cross-chain perspective or ad-
dress generic blockchain environments like (Bartoletti et al. [2], Bello et al. [18]),
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indicating the need for more generalized, blockchain-agnostic detection tech-
niques.

Type of Fraud. There is a great variation in the typologies of fraud within
the literature. There is a heavy concentration of Ponzi and phishing scams in
(Chen et al. [15], Ostapowicz and Żbikowski [11], Bartoletti et al. [10]), as well as
laundering, market manipulation, pump-and-dump, and double-spending attacks
in (La Morgia et al. [16], Ashfaq et al. [12]). Emerging attack vectors like token
scams, in Walavalkar et al. [9], and mining-based frauds such as selfish mining, in
Aponte-Novoa et al. [17], has increased the sophistication of the threats. A few
works, like (Bartoletti et al. [2], Elmougy and Liu [7]), have adopted a multi-
fraud view with the goal to consolidate detection frameworks across different
types of fraud.

Datasets Used. The choice of datasets significantly impacts the robustness
and generalizability of the results. Studies utilizing labeled datasets, notably
(Nayyer et al. [8], Ostapowicz and Żbikowski [11]), offer strong benchmarking
potential, though class imbalance and label noise remain concerns. Others rely
on synthetic data (Ashfaq et al. [12]), or simulated data (Aponte-Novoa et al.
[17]), limiting their real-world applicability. Public blockchain data is widely
used due to its availability, but few studies integrate off-chain data, which could
improve contextual understanding of fraudulent behavior.

Methodologies. Supervised machine learning dominates the methodological
landscape, particularly in fraud classification tasks, notably (Tripathy et al.
[4], Kumari [13], Ostapowicz and Żbikowski [11], Anthony et al. [14]). Graph-
based methods are increasingly prevalent in studies focusing on transaction net-
works and wallet behaviors, such as (Shayegan et al. [6], Elmougy and Liu [7]).
A minority of works, including (Walavalkar et al. [9]), use unsupervised learn-
ing for anomaly detection or hybrid frameworks associating machine learning
with domain-specific heuristics or blockchain analytics. Only one study, Bello
et al. [18], proposes a conceptual model integrating AI and blockchain without
empirical implementation.

Algorithms Employed. XGBoost, Support Vector Machines, and Random
Forest are the most commonly used algorithms, all of which offer a good balance
between interpretability and performance. Capturing temporal and nonlinear
fraud patterns requires the use of deep learning models such as Convolutional
Neural Network (CNNs), Recurrent Neural Network (RNNs), and autoencoders,
as demonstrated by (Kamisetty et al. [5], Nayyer et al. [8]). When analyzing
portfolio-level behavior, graph clustering algorithms such as DBSCAN and K-
means are common, among them (Bello et al. [18], Shayegan et al. [6]). There is
some variety in algorithms used, but ensemble models combined with hyperpa-
rameter optimization remain relatively underutilized in the current literature.

Evaluation Metrics. Most papers, including (Anthony et al. [14], Bartoletti
et al. [10], Kamisetty et al. [5]), use basic classification evaluation criteria, such as
AUC, F1-score, precision, recall, and accuracy. La Morgia et al. [16] investigate
real-time detection and estimate the latency required for identifying fraudulent
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events. However, the lack of standardized metric reporting across studies com-
plicates efforts to compare their results and assess relative performance. Very
few works discuss model robustness or statistical significance, which are critical
to assessing capability for generalization.

Real-Time Capabilities. A limited number of works, illustrated by (La Mor-
gia et al. [16], Ashfaq et al. [12], Bello et al. [18]), support or simulate real-time
fraud detection. Most frameworks focus on analyzing historical data, leaving
real-time detection a major unsolved problem due to latency, throughput, and
scaling challenges in blockchain networks. On the other hand, simulations and
conceptual models demonstrate promising potential, although few have been
operationalized in real-world or production environments.

Explainability. Explainable AI (XAI) remains underexplored, with only par-
tial implementations via feature importance rankings or SHAP values. Many
studies, notably (Ostapowicz and Żbikowski [11], Elmougy and Liu [7]), priori-
tize detection accuracy over interpretability, which poses barriers to regulatory
adoption and user confidence. This is especially problematic in financial appli-
cations, where decisions often need to be auditable and legally defensible.

Limitations Identified. Some of the common limitations include class imbal-
ance, as in (Elmougy and Liu [7]), lack of real-time implementation and deploy-
ment, as in (Chen et al. [15], Bartoletti et al. [10]), use of synthetic or limited
datasets, as in (Ashfaq et al. [12]), and insufficient validation. Many models re-
main vulnerable to evolving fraud strategies because they rely on static features
or patterns derived from outdated behaviors captured in historical data. Addi-
tionally, most studies ignore off-chain data sources like social media or regulatory
data, which are increasingly important in capturing the context of fraud. The
identified limitations reflect the current progress and ongoing challenges in AI-
based fraud detection for cryptocurrency networks. Although supervised learn-
ing remains the dominant approach, there is a growing need for non-blockchain
solutions, real-time interpretability, and scalable frameworks. These emerging
efforts also include the integration of multimodal datasets—capturing on-chain
and off-chain information—and the development of adaptive learning models.
Addressing these gaps will not only advance academic research but also con-
tribute to building more robust and resilient crypto-financial infrastructures.

5 Challenges & Solutions
By categorizing and comparing the latest studies on cryptocurrency fraud de-
tection using AI, we highlight common weaknesses as well as new avenues for
researchers to explore. These findings are structured into two overarching cate-
gories: key challenges and proposed solutions.

5.1 Challenges
Each of the three methodological classes presents distinct challenges and limita-
tions in the context of crypto-fraud detection, as shown in Figure 1.

– Class 1 (Advanced AI-Based Methods): Although models such as graph neu-
ral networks and deep learning architectures, used notably by (Elmougy and



10 No Author Given

Liu [7], Shayegan et al. [6]) demonstrate high detection accuracy and adapt-
ability, they often suffer from interpretability and computational complexity
issues.Nayyer et al. [8] exploit ensemble learning and SHAP for explainabil-
ity, but highlight the challenge of scaling to larger datasets. Additionally,
Kamisetty et al. [5] highlight the need for large annotated datasets, which
are often not available in real-world blockchain settings.

– Class 2 (Classical Machine Learning Approaches): Models such as Random
Forest or XGBoost, employed in (Bartoletti et al. [10], Tripathy et al. [4])
provide more interpretable and computationally efficient solutions but suffer
from overfitting and poor generalization. Ashfaq et al. [12] acknowledge that
despite achieving strong performance on labeled data, the approach faces
challenges with unseen fraud types due to the imbalance of the dataset and
the lack of contextual information. Finally,Kumari [13] note that his model’s
performance deteriorates in highly volatile market conditions.

– Class 3 (Heuristic, Rule-Based, and Conceptual Methods): Works such as
(Aponte-Novoa et al. [17], Chen et al. [15]) provide valuable theoretical in-
sights but face limited adaptability and lack of automation. The La Morgia
et al. [16] paper relies on hand-crafted heuristics to instantly detect pumping
and drainage patterns but acknowledges the difficulty of generalizing them
to new treatment models. Similarly, Bello et al. [18] proposes a conceptual
framework without experimental validation, making its practical utility un-
certain.
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Fig. 1. Challenges by methodological class in cryptocurrency fraud detection.
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Overall, while each class has unique strengths and forces, they also have critical
limitations that must be addressed to enable robust and scalable fraud detection
in dynamic cryptocurrency systems.

5.2 Solutions
In the field of crypto-fraud detection, each methodological class faces specific
technical and practical challenges. Below is a synthesis of the main issues and
appropriate solution strategies based on recent initiatives and practices.

Class 1—Advanced AI-Based Approaches

– Lack of interpretability: integrate explainability tools like SHAP, LIME, or
GNNExplainer to reveal model decision-making processes. In addition, incor-
porating attention mechanisms can also enhance the model’s interpretability.

– High computational complexity: apply model compression techniques such as
pruning, knowledge distillation, or quantization. Also take advantage of high-
performance architectures and GPU/TPU-accelerated batch processing.

– Requirement for large annotated datasets: leverage semi-supervised learning
or self-supervised techniques. Additionally, generate synthetic data or labels
via simulation or expert-driven labeling.

– Poor transferability across contexts: use transfer learning or domain adapta-
tion to improve generalization to unseen contexts or different platforms, for
example, transferring from Ethereum to Bitcoin.

– Overhead from explainability mechanisms: favor lightweight or integrated
explainability methods like attention-based networks or simplified surrogate
models.

Class 2—Classical Machine Learning Approaches

– Overfitting to training data: use cross-validation, regularization, and ensem-
ble methods, and expand the dataset with synthetic fraud instances.

– Poor generalization to unknown frauds: combine with anomaly detection
techniques or integrate unsupervised learning to capture unknown patterns.

– Data imbalance issues: use resampling strategies like SMOTE (Synthetic Mi-
nority Oversampling) or undersampling. Alternatively, use Generative Ad-
versarial Networks (GANs) to produce synthetic fraudulent samples.

– Lack of relational or temporal modeling: enrich feature sets with temporal
sequences or topological data from transaction graphs, combining time-series
preprocessing with graph-based learning methods.

– Sensitivity to market volatility: integrate contextual features, such as volatil-
ity indicators, and periodically retrain models using sliding time windows.

Class 3—Non-ML, Heuristic or Conceptual Approaches

– Rigidity of rule-based systems: implement rule-learning systems or adaptive
logic-based engines. Use symbolic AI or evolutionary algorithms to automate
rule refinement.

– Low adaptability to new fraud patterns: develop self-updating rule bases
using user feedback loops or active learning strategies for semi-automatic
updates.
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– Lack of automation: deploy real-time detection systems using event-driven
frameworks, such as Apache Kafka, real-time APIs, and smart contracts.

– Absence of empirical validation: encourage open benchmarking using public
or synthetic datasets, while validating models through reproducible experi-
ments and cross-comparisons.

– Ineffectiveness on complex fraud patterns: combine rule-based systems with
machine learning or anomaly detection in a hybrid detection pipeline to
balance interpretability and adaptability.

Hybrid approaches combining the interpretability of inference, the efficiency of
traditional machine learning, and the advanced adaptability of artificial intelli-
gence (AI) appear promising. Moreover, the integration of self-supervised learn-
ing, transfer learning, and advanced artificial intelligence (AAI) could improve
scalability and reliability in dynamic and data-limited blockchain environments.

6 Research directions
This section presents research trends in AI-driven cryptocurrency fraud de-
tection, focusing on addressing current gaps through hybrid and scalable ap-
proaches. Based on a three-category analysis, it addresses key limitations, such
as data sparsity, market volatility, and the evolving complexity of fraud. The
following directions are categorized into three thematic areas:

6.1 Class 1-Advancing Interpretable and Scalable Deep Learning
Models

Advanced AI techniques, such as neural networks and large-scale neural net-
works, are increasingly used to monitor complex blockchain environments. How-
ever, their effectiveness depends on their interpretability, scalability, and practi-
cal deployment. To address these challenges, future research should focus on:

– Improving interpretability and performance:
• Design attention-based neural architectures to enhance model trans-

parency and focus on key transactional features.
• Combine symbolic and subsymbolic reasoning within hybrid frameworks

to improve interpretability and logic-based traceability.
– Reducing computational burden through optimization:

• Implement model compression techniques—like pruning, parameter shar-
ing, and knowledge distillation—to reduce computational overhead.

• Ensure a trade-off between model compactness and predictive accuracy
for effective deployment in production environments.

– Addressing data scarcity with modern training strategies:
• Leverage self-supervised and semi-supervised learning paradigms to uti-

lize large volumes of unlabeled blockchain data.
• Refine smaller annotated subsets to improve accuracy.

– Enhancing generalizability with transfer learning:
• Apply domain adaptation techniques to generalize models across various

blockchain infrastructures and cryptocurrency environments.
• Enhance robustness by transferring learned representations from adja-

cent domains of financial or cyber fraud detection.
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6.2 Class 2-Improving Robustness and Adaptability in Classical ML
Traditional machine learning techniques remain attractive due to their simplic-
ity, interpretability, and computational efficiency. However, they face several
challenges related to their adaptability and robustness. To strengthen their reli-
ability, future research should focus on:

– Enhancing model resilience and generalization:
• Mitigate overfitting and improve adaptability to evolving fraud patterns.
• Incorporate temporal and relational features to reflect blockchain dy-

namics.
• Develop ensemble frameworks combining accurate classifiers and anomaly

detectors.
– Addressing data imbalance in fraud detection:

• Complement oversampling techniques (e.g., SMOTE) with adversarial
data augmentation.

• Generate synthetic fraudulent transactions using GANs to enrich minor-
ity classes.

– Improving feature engineering and temporal modeling:
• Combine manual feature extraction with graph-based and temporal rep-

resentations.
• Encode transaction sequences and wallet interaction patterns to capture

fraud dynamics.
• Include contextual features such as market volatility or social sentiment.

– Extending detection capabilities with unsupervised learning:
• Integrate unsupervised or semi-supervised modules to detect novel static

patterns.
• Expand coverage from static signatures to dynamic behavioral patterns.

6.3 Class 3-Bringing Automation and Flexibility to Heuristic
Methods

Heuristic and rule-based approaches offer transparency, scalability, and consis-
tency in the domain. Often, they lack adaptability and empirical robustness.
Future work should be considered to modernize these systems and increase their
relevance.

– Automating rule generation and evolution:
• Use genetic programming and symbolic AI to derive detection rules from

historical data or expert knowledge.
• Implement feedback loops and active learning to refine rules based on

model validation and detected errors.
– Enabling real-time detection through dynamic systems:

• Leverage event-driven systems (e.g., Kafka, smart contracts) for live de-
tection pipelines.

• Transform static rules into adaptive mechanisms capable of reacting to
live fraud events.

– Ensuring validation and reproducibility:
• Evaluate systems in sandboxed blockchain environments.
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• Compare results using datasets from public cryptocurrency ledgers to
ensure generalizability.

– Exploring hybrid models for persistent threats:
• Combine heuristics with machine learning or anomaly detection to bal-

ance interpretability and adaptability.
• Enhance adaptability while maintaining explainability through hybrid

inference frameworks.

7 Conclusion
Several cross-cutting themes emerge across all methodological classes. First, hy-
brid frameworks integrating deep learning, classical ML and heuristic knowledge
provide a powerful path forward, especially when combined with modular archi-
tectures that allow of independent component updating or replacement. Second,
the emergence of on-chain and off-chain data integration, such as combining
blockchain data with social media or regulatory information, opens up new pos-
sibilities for context-rich models. Third, there is a growing need for standards,
metrics, and standardized datasets to accurately evaluate and compare fraud de-
tection models. Establishing such shared and open empirical frameworks would
accelerate innovation and replicability. Finally, regulatory compliance and ethical
issues related to fairness, transparency, and privacy should be a focus of future
research to make fraud detection systems reliable, verifiable, and compliant with
financial governance principles. In short, future research should not only im-
prove methodological performance but also enhance interpretability, adaptabil-
ity, and accountability. Only these diverse strategies will enable the construction
of robust fraud detection systems that protect rapidly evolving cryptocurrency
ecosystems.
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