
Abstract. Brain tumors pose significant challenges in both clinical practice and 

medical research, primarily due to their delicate localization within the central 

nervous system and the profound neurological implications they entail. Timely 

and accurate tumor identification remains an ongoing concern in the radiological 

landscape. In this work, we propose NeuroVisionNet, a novel deep learning 

framework tailored for classifying four key intracranial conditions—glioma, 

meningioma, pituitary tumors, and healthy cases—based on contrast-enhanced 

T1-weighted MRI scans. Built upon the EfficientNetB3 architecture, the pipeline 

integrates advanced preprocessing strategies, transfer learning, fine-tuning pro-

cedures, and early stopping mechanisms to promote model generalization. For 

model interpretability, Grad-CAM is employed to visualize salient regions influ-

encing predictions. The model’s diagnostic performance is assessed using a com-

prehensive suite of metrics: accuracy, precision, recall, F1-score, and confusion 

matrix. The Modified EfficientNetB3 achieves a classification accuracy of 

98.73%, demonstrating strong potential for enhancing diagnostic accuracy, min-

imizing false positives, and reducing reliance on manual radiological review. 

This approach supports medical professionals in making more informed, efficient 

decisions, ultimately contributing to improved patient outcomes. 
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1 Introduction 

Recent advancements in artificial intelligence (AI), particularly in deep learning, have 

significantly impacted various industries, with healthcare being a prominent benefi-

ciary. The integration of AI technologies into healthcare systems has enhanced the ef-

ficiency, accuracy, and quality of medical services, enabling improved patient out-

comes and optimized clinical workflows. In contrast, DL techniques excel in automated 

feature extraction, offering robust performance and gaining widespread adoption in re-

cent years for both detection and classification tasks in medical imaging [1;2]. As well, 

Brain tumors represent one of the most severe and life-threatening types of neurological 

disease, often leading to significant morbidity and mortality if not detected and treated 

early. According to the World Health Organization (WHO), brain tumors are classified 

into over 120 types, with gliomas, meningiomas, and pituitary tumors among the most 

common [3]. Accurate classification of these tumor types is vital for determining treat-

ment protocols, surgical planning, and prognosis. Traditionally, this classification is 

performed manually by radiologists using Magnetic Resonance Imaging (MRI), which 
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offers detailed soft tissue contrast. However, manual analysis is subjective, time-con-

suming, and prone to inter-observer variability [4]. 

In recent years, deep learning has emerged as a powerful tool for automated medical 

image analysis, particularly in the domain of brain tumor classification. Among deep 

learning models, Convolutional Neural Networks (CNNs) have achieved remarkable 

success due to their capacity to learn complex hierarchical representations from image 

data. CNNs have been effectively applied to tasks such as tumor segmentation, locali-

zation, and classification [5; 6; 7]. Earlier CNN-based models such as VGGNet, Res-

Net, and DenseNet were extensively used for brain tumor diagnosis, achieving notable 

accuracy [5; 6]. More recently, EfficientNet, a family of CNN architectures developed 

by Tan and Le [8], has gained popularity due to its compound scaling method, which 

balances network depth, width, and resolution. Among them, EfficientNetB3 provides 

a lightweight yet high-performance architecture suitable for medical imaging tasks, par-

ticularly when computational resources are constrained. 

In this study, we propose NeuroVisionNet, an enhanced classification model based on 

EfficientNetB3 and augmented with Grad-CAM for transparency. The model is tested 

on a curated public dataset and includes the critical 'no tumor' class, increasing real-

world diagnostic utility. This study utilized the publicly available brain tumor MRI da-

taset for the development and validation of our proposed model. The dataset consists 

of T1-weighted contrast-enhanced magnetic resonance images, encompassing four dis-

tinct classes of brain tumors: glioma, meningioma, pituitary, and non-tumor. Unlike 

many recent works that incorporate complex hybrid designs, such as combinations of 

CNNs and Transformers [9] or quantum-inspired models [10]. Besides that, this study 

focuses on achieving competitive accuracy using a purely CNN-based model. We aim 

to demonstrate that EfficientNetB3, with proper preprocessing and training strategies, 

can yield high classification performance (98% accuracy in our experiments) while 

maintaining interpretability, efficiency, and clinical applicability. 

The rest of the paper is organized as follows: Section 2 introduces the related work 

review on brain tumor classification techniques proposed by various researchers. Sec-

tion 3 presents the proposed deep learning models used for brain tumor multi-classifi-

cation from clinical patients, and the experimental results and discussion are covered 

in Section 4. Finally, Section 5 provides the proposed DL model conclusion, limita-

tions, and planning for future works. 
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2 Related work 

In the literature, Convolutional Neural Networks (CNNs) have proven high perfor-

mance for medical image classification, particularly for medical tasks involving brain 

tumor diagnosis from MRI scans. We are going to cite some studies that have explored 

and optimized CNN-based architectures for automatic tumor classification using the 

Kaggle brain tumor dataset, which includes three tumor types: glioma, meningioma, 

and pituitary tumor. For instance, Zahoor and Khan [11] proposed a deep residual net-

work architecture called Res-BRNet, specifically designed for brain tumor classifica-

tion using MRI images. Their model emphasized regional feature extraction through a 

residual structure, achieving 98.22% accuracy on the Kaggle dataset. This result 

demonstrated the effectiveness of residual connections in mitigating vanishing gradient 

issues and enhancing model convergence. The study by Liu and Wang [12] conducted 

a comprehensive comparative analysis of several pre-trained CNN architectures, in-

cluding VGG16, ResNet50, DenseNet121, and EfficientNetB0. Among them, Effi-

cientNetB0 emerged as the most accurate and computationally efficient model, achiev-

ing a strong balance between performance and inference speed. Their findings con-

firmed that depth and width scaling, as used in EfficientNet, could significantly im-

prove model generalization without increasing parameter count drastically. Another re-

search by Ismael and Abdel-Qader [13] used CNNs to classify tumors from MR images, 

achieving good performance with minimal preprocessing. Afshar et al. [14] proposed 

capsule networks, which model spatial relationships in image data. Another recent con-

tribution came from researchers who developed a CNN-based model enhanced with 

extensive image preprocessing techniques, such as histogram equalization and homo-

morphic filtering [15]. While these preprocessing steps were designed to enhance con-

trast and suppress noise, the classification pipeline itself was based purely on CNN 

layers. Their work reinforced the value of traditional preprocessing when used in com-

bination with well-tuned CNN architectures. In a similar vein, our approach utilizes 

Finetuned EfficientNetB3, a lightweight and high-performing CNN, and achieves 

98.5% accuracy without any transformer or hybrid integration. 

Table 1 Summarizes recent CNN-based models for multiclass brain tumor classifi-

cation. 

 

Author(s) Model Description Application Dataset Number 

of classes 

Deepak & 

Ameer (2019) 

Pretrained 

CNN (Res-

Net50) 

Transfer learn-

ing for MRI-

based tumor 

classification 

Brain tumor 

classification 

Kaggle 

brain tumor 

dataset 

3-class 

(glioma 

meningi-

oma pitu-

itary) 
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3 Proposed Approach 

Deep learning techniques have been applied in a variety of industries, including 

healthcare, thanks to the significant breakthroughs in artificial intelligence (AI) in re-

cent years. In order to increase the effectiveness and calibre of services, artificial intel-

ligence (AI) has also been included in several industries. Figure 1 illustrates how our 

study is linked to some background concepts and research initiatives in accordance with 

our goals and motives.  In particular, it has been an amazing idea to use EfficientNetB3 

model to detect brain tumors in MRI scans and classify them using image processing 

(See Fig. 1). 

 

Swati et al. 

(2019) 

CNN with 

augmenta-

tion 

CNN with data 

augmentation 

and feature fu-

sion 

Brain tumor 

classification 

Figshare 

brain tumor 

dataset 

3-class 

(glioma 

meningi-

oma pitu-

itary) 

Sajjad et al. 

(2019) 

Multiscale 

CNN 

Multi-scale 

CNN for brain 

tumor classifi-

cation 

Brain tumor 

classification 

Kaggle 

brain tumor 

dataset 

4-class 

(grade I II 

III IV) 

Rehman et al. 

(2020) 

CNN + 

Transfer 

Learning 

MRI tumor 

classification 

using CNN 

with transfer 

learning 

Brain tumor 

classification 

MRI dataset 

(unspeci-

fied) 

2-class 

(Tumor, 

No_Tu-

mor) 

Paul et al. 

(2022) 

Efficient 

CNN 

Optimized 

CNN for accu-

rate and fast 

classification 

Brain tumor 

classification 

Kaggle (as-

sumed) 

2-class 

(Tumor, 

No_Tu-

mor) 

Zahoor & 

Khan (2022) 

Res-

BRNet 

(Residual 

CNN) 

Deep CNN 

with regional 

spatial atten-

tion 

Tumor classi-

fication 

Kaggle 

brain tumor 

dataset 

4-class 

(glioma, 

meningi-

oma, pi-

tuitary, 

No_Tu-

mor) 

Md Islam et 

al. 

(2024) 

Efficient-

Net trans-

fer learn-

ing 

Precision Brain 

Tumor Classi-

fication with 

Optimized 

EfficientNet 

Architecture 

Brain Tumor 

classification 

Figshare 3-class 

(glioma 

meningi-

oma pitu-

itary) 
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 Fig. 1. Ideas and research efforts in the background of this study 

In the context mentioned above, we propose a modified EfficientNetB3, an enhanced 

classification model based on EfficientNetB3 and augmented with Grad-CAM for 

transparency. This study followed an easy-to-design data pre-processing and pre-

trained CNN approach for the classification of Brain tumor by considering the brain 

tumor images MRI dataset as input data. Initially, data are pre-processed using some 

deep learning technique. Our proposed model is then used to extract features, train, and 

classify the dataset. Finally, some evaluation criteria are used to gauge performance 

(see Fig. 2). 
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Fig. 2. Main steps of the proposed approach 

3.1  Dataset 

Magnetic Resonance Imaging (MRI) plays a critical role in the early diagnosis and 

classification of brain tumors. This study employs the Kaggle Brain Tumor MRI da-

taset [17;18], a publicly accessible collection of brain MRI images, for the purpose of 

training and evaluating a Convolutional Neural Network (CNN)-based classification 

system. The dataset comprises T1-weighted contrast-enhanced MRI scans of patients 

diagnosed with one of the three main types of brain tumors: Glioma, Meningioma, and 

Pituitary. These images are categorized and organized into training and testing folders. 

The dataset contains a total of approximately 3,000 images, evenly distributed among 

the classes. 

Class Descriptions 

The dataset contains 3 classes of brain tumors, which are described as follows: 

▪ Glioma: Originates in the glial cells; tends to be malignant and invasive. 

▪ Meningioma:  Develops in the meninges, usually benign, but can exert 

pressure on tissues. 
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▪ Pituitary: Arises in the pituitary gland; often benign, may affect hormonal 

balance. 

 
Fig. 3. Three different tumors (meningioma, glioma, and pituitary tumor) in three 

different views. 

3.2 Preprocessing and Augmentation 

In the domain of brain tumors, the efficacy of deep learning models is heavily reliant 

upon the quality and variety of data sources used in conjunction with rigorous prepro-

cessing techniques. In the literature, data preprocessing is one of the most crucial steps 

while feeding the data to deep learning models [19]. The details of the research dataset 

are explained in the following: 

▪ Size: Varies, commonly around 512×512 pixels, then resizing to 224×224 pix-

els for compatibility with CNN input dimensions. 

▪ Color conversion: Grayscale or RGB (depending on version) 

▪ Image normalization (e.g., pixel values scaled to [0,1]) and reducing noise. 

▪ Data augmentation: rotation, flipping, contrast adjustment, and zooming. 

 

We apply data augmentation to improve generalization: 

▪ Random rotations (30 degrees) 

▪ Zoom and shear transformations 

▪ Brightness/contrast shifts 

▪ Horizontal and vertical flips 

▪ Validation split: 20% 
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3.2 Data Splitting 

In the literature, data splitting is frequently used to divide data into train, test, and 

validation sets.  For this study, we separate the data for this study into 20% for testing 

samples and 80% for training samples. To minimize variation and ensure the models’ 

generalizability, the data are rearranged before being divided.  Furthermore, shuffling 

helps prevent model overfitting and makes the training data more reflective of the 

overall data distribution. 

3.4 EfficientNetB3 Model Architecture 

EfficientNetB3 is part of the EfficientNet family, which uses a compound scaling strat-

egy to uniformly scale network depth, width, and resolution in a balanced manner. In-

troduced by Tan & Le, [8], EfficientNet significantly improves accuracy and efficiency 

compared to traditional CNNs by using a neural architecture search (NAS) to determine 

an optimal baseline architecture. EfficientNetB3 achieves a good trade-off between 

model size and accuracy, making it ideal for medical imaging tasks where computa-

tional resources may be limited. 

The EfficientNetB3 model employs: 

• Mobile inverted bottleneck convolutions (MBConv) 

• Squeeze-and-Excitation (SE) blocks for channel attention 

• Swish activation functions 

Moreover, EfficientNetB3 operates on 300×300 images by default but is flexible for 

resizing. It has approximately 12 million parameters and achieves high performance 

with relatively low computational cost. In this context, the modified EfficientNetB3 

model is based on EfficientNetB3, pretrained on ImageNet. Additionally, the training 

process is split into two distinct stages to leverage the advantages of transfer learning 

while preventing overfitting: 

▪ Initial Training (Feature Extraction Phase): In the first stage, the base Effi-

cientNetB3 model is kept frozen to preserve its pre-trained weights. Only the 

newly added classification layers are trained. This enables the model to start 

learning domain-specific features from the new dataset without disrupting the 

powerful features already learned on ImageNet. 

▪ Fine-Tuning Phase: After the top layers have adapted to the dataset, the entire 

model (including the base) is unfrozen and fine-tuned at a lower learning rate. 

This stage allows the model to update deeper features in a controlled manner, 
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improving its capacity to extract more relevant representations while avoiding 

catastrophic forgetting or overfitting. 

This two-phase approach ensures both fast convergence and optimal adaptation to med-

ical image-specific features (See Table 2). 

 

Table 2. The additional Layers of the modified EfficientNetB3 

Layer Type Description 

Input Input layer with shape (224, 224, 3) 

EfficientNetB3 

Base 

Pretrained on ImageNet, initially frozen during first training 

phase 

GlobalAverage-

Pooling2D 

Reduces spatial dimensions to a 1D feature vector 

BatchNormaliza-

tion 

Stabilizes and speeds up training  

Dropout Applied with rate 0.3 to prevent overfitting 

Dense Layer Fully connected layer with 1280 neurons, ReLU activation 

 L2 regularization added (e.g., λ = 0.001) 

OutPut Dense 

Layer  

Final Dense layer with 4 neurons, softmax activation for clas-

sification 

Adam Optimizer 

The Adam (Adaptive Moment Estimation) optimizer is an efficient stochastic gradient 

descent method that computes adaptive learning rates for each parameter. It combines 

the advantages of two popular optimizers: AdaGrad (which works well with sparse gra-

dients) and RMSProp (which works well in non-stationary settings). Adam updates 

model parameters using the first moment (mean) and the second moment (uncentered 

variance) of the gradients [20]. The key advantages of Adam include: 

• Adaptive learning rate per parameter; 

• Fast convergence ; 

• Works well with noisy or sparse data. 

In this study, Adam is used for both initial training (learning rate 1e-4) and fine-tun-

ing (learning rate 1e-5) phases, contributing to smoother and faster optimization. To 

address overfitting, we used regularisation and fine-tuning 
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Table 3: Steps to avoid overfitting. 

Phase  Configuration 

Stage 1 Base model frozen; only top layers trained (10 epochs) 

Stage 2 All layers unfrozen; fine-tuning performed with low 

LR (1e-5) for 10 epochs 

Optimizer  Adam 

Loss Categorical Crossentropy 

 

Grad-CAM Explainability 

We employ Grad-CAM (Gradient-weighted Class Activation Mapping). Grad-CAM 

heatmaps were applied to test predictions. Visual saliency matched visible tumor areas 

in most examples, confirming the model's focus on relevant features. As well, we used 

the top_conv layer of EfficientNetB3 as the target layer for Grad-CAM. Input images 

are resized to 224*224 and passed through the model to extract feature maps and class-

specific gradients.  

 

 

Fig4: an example of visual Grad-CAM in a meningioma case 

4 Experimental and Results 

The majority of studies in the literature that employ Convolutional Neural Networks 

(CCN) for image classification train their models using hundreds of MRI images of 
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brain tumors. Likewise, we used the EfficientNetB3, but we added some layers to adapt 

it to our case study. 

4.1 Experimental Environment 

We used the Anaconda Jupyter Notebook for the experiments. Because Python is 

widely supported in Jupyter Notebook, it is used as the programming language. Numer-

ous libraries for data analysis and model training are also available in the computer 

language. 

The experimental environments used in this experiment were the Windows 10 operat-

ing system, Intel Core i7-6500U CPU @ 2.50GHz   2.59 GHz, RAM 8.00 Go, with 

graphic card Intel HD Graphics 520 128 MB specifications, and the system type 64-bit 

operating system. Python 3.7.9 is the programming language and version. The follow-

ing libraries are utilized for executing this framework such as Scikit-Learn, Tensor-

Flow, and Keras. 

4.2 Evaluation Criteria 

 

According to the majority of authors in the literature, classifying the obtained data and 

assigning it to a particular class comes last after the relevant feature has been extracted. 

The main metrics of True-Positive (TP), True-Negative (TN), False-Positive (FP), and 

False-Negative (FN) are used to assess the various classification performance aspects 

of the suggested hybrid technique. Other crucial variables like accuracy, precision, sen-

sitivity, specificity, and F1 score are also calculated with the use of these factors. These 

popular parameters are defined as follows: 

 

Sensitivity(Recall) = TP/TP+FN  (1) 

The recall metric will tell us how well a model is in finding all of the true positives and 

is a ratio of true positives over all entities in the testing set. 

Specificity = TP/TP+FP   (2) 

In general, sensitivity and specificity evaluate the effectiveness of the algorithm on a 

single class, positive and negative, respectively.  

Accuracy = TP+TN/TP+TN+FN+FP   (3) 

Precision = TP/TP+FP   (4) 

The precision metric will show the ratio of true positives over the total number of de-

tected entities. In other words, this metric will help us understand how well a model is 

in returning only the true positives and not unrelated entities. 
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𝐹 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
    (5) 

The most popular statistic for assessing categorization ability is accuracy. This measure 

determines the proportion of accurately categorized samples. Precision also refers to 

how "precise" the model is in predicting good outcomes and how many of those out-

comes are real. The model performs better on the positive class when the metric (F1-

score) has a high value. Therefore, when a balance between Precision and Recall is 

required with an unequal class distribution (a high number of Actual Negatives), the 

F1-score (also called the F-measure) may be a preferable metric. This measure can be 

used to display a tool's overall performance. 

4.3 Results and Discussion. 

However, challenges remain. MRI data are inherently complex and often suffer from 

noise and variability. The dataset used, while comprehensive, may not represent the full 

spectrum of clinical diversity. Additionally, while classification is useful, segmentation 

and localization of tumors are equally critical for treatment planning. 

The EfficientNet model achieved 98.73% accuracy on the test dataset (389 correct 

predictions out of 394 total samples). All four classes showed precision and recall above 

97%. The confusion matrix indicated minimal overlap between tumor types, with most 

misclassifications occurring between glioma and meningioma. Class-wise metrics are 

summarized in Table 1 (See Table 1). 

 

Table 4: Classification Report for each class 

 

Class Precision Recall F1-score 

Glioma 0.99 0.98 0.99 

Meningioma 0.99 0.98 0.98 

Pituitary 0.99 0.99 0.99 

No_Tumor 0.97 0.99 0.98 

 

The Confusion matrix analysis revealed minimal misclassification across all classes. 

The model performs exceptionally well across all four classes, which are Glioma, men-

ingioma, pituitary and no_tumor, with all accuracies and recalls above 98%, but the 

Confusions were between Glioma and Meningioma, which is expected as these tumor 

types can present similarly in MRIs. Then, there were zero misclassifications between 

Pituitary and No Tumor, showing strong class separation. At the end, there is no sys-

tematic bias observed; errors are very minimal and scattered. 
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Fig. 5. The Confusion Matrix of our Model 

 

Theoretically, losses are the mistakes made during the model's training phase of pre-

diction. The approach uses categorical cross-entropy to quantify the loss and divides 

images into four classes. Fig. 6 shows the approaching model's training accuracy versus 

validation accuracy and training loss versus validation loss graphically. In a multiclass 

classification task, loss is defined by the following equation.  

𝑙𝑜𝑠𝑠(𝑙) = −∑ 𝑦𝑖,𝑚
𝑛

𝑚=1
log(𝑝𝑖,𝑚)   (6) 

Our Modified EfficientNetB3 model states that a model is better if its loss is lower and 

that its classification results are more satisfying if its accuracy is higher. 
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Fig. 6. The Result of our EfficientNetB3 model (represents the accuracy and loss 

model)   

As a result, the modified EfficientNetB3 model achieved an accuracy of 0.98 on the 

test dataset, indicating that our model was able to correctly predict the brain tumor im-

ages of 98,73%. As expected, our EfficientNetB3 model achieved the highest scores of 

recall, precision, F1-score, and Loss 0.99, 0.98, 0.99, and 0,045, respectively. 

Ultimately, the EfficientNetB3 model effectively balances accuracy and generaliza-

tion using dropout, L2 regularization, and fine-tuning. Unlike baseline EfficientNetB3 

applications that overfit quickly, our implementation maintains stable validation met-

rics. Grad-CAM integration ensures transparency, critical for medical applications. 

The results confirm that EfficientNetB3 is highly effective for brain tumor classifi-

cation. Its compound scaling leads to better accuracy with fewer resources. Compared 

to conventional architectures, EfficientNetB3 also converges faster and requires less 

parameter tuning. The most important properties of this model are high accuracy with 

explainability, robustness to overfitting, and minimal configuration using public data, 

but unfortunately, it has some limitations, such as the dataset is still relatively small, 

and it has not been tested on external hospitals or multi-institutional data 
4.4 Impact medical 

This work provides a clinically useful AI method for classifying brain tumors from 

MRI images. Through the use of Grad-CAM to embed explainability and achieve high 

diagnostic performance, the modified EfficientNetB3 closes the gap between AI re-

search and practical clinical adoption. It expedites evaluation, boosts diagnostic confi-

dence, and eventually facilitates prompt, individualized treatment decisions. 
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5 Conclusion 

Brain tumors pose a significant diagnostic and therapeutic challenge due to their heter-

ogeneous morphology, subtle visual patterns in MRI scans, and the critical nature of 

timely intervention. Traditional diagnostic workflows heavily rely on manual radiolog-

ical interpretation, which can be time-consuming, in response to this need, we intro-

duced a deep learning framework based on the EfficientNetB3 architecture, designed 

to classify brain MRI images into four distinct categories: glioma, meningioma, pitui-

tary tumor, and no tumor. Our approach integrates a two-phase training strategy feature 

extraction followed by fine-tuning coupled with regularization techniques such as drop-

out and L2 norm to enhance generalization and reduce overfitting. In conclusion, this 

research affirms the utility of the modified EfficientNetB3 architecture in medical im-

age classification and establishes a strong foundation for future developments in auto-

mated brain tumor diagnosis. We envision this framework being integrated into clinical 

decision support systems, enhancing diagnostic accuracy and reducing the workload on 

radiologists. Future research could also explore hybrid models, attention mechanisms, 

and multimodal data fusion to further boost performance and interpretability. 
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