
A Historical Overview of Image Quality Assessment 

Methods: Focus on Medical Imaging Applications 

Abstract. This paper provides a comprehensive review of Image Quality Assess-

ment (IQA) methods, tracing their historical development from early conven-

tional metrics to modern deep learning-based approaches. First, it describes fun-

damental subjective and objective techniques, including full-reference, reduced-

reference, and no-reference methods. Then, the review examines major advance-

ments across different eras, including HVS-based models, transform-domain and 

natural scene statistics techniques, and traditional machine learning approaches. 

Special attention is given to recent deep learning innovations, particularly con-

volutional neural networks (CNNs), vision transformers, and modern training 

paradigms such as transfer learning, meta-learning, and self-supervised learning. 

The survey emphasizes the applications in medical imaging, where accurate and 

robust IQA is critical for reliable diagnosis and clinical decision-making. Finally, 

the paper highlights ongoing challenges and outlines future research directions 

for building medically effective and reliable IQA systems. This paper aims at 

serving as a comprehensive reference for researchers seeking to understand ex-

isting approaches, identify limitations, and develop new solutions tailored to do-

main-specific needs. 
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works (CNN); Vision Transformers (ViT); Natural Scene Statistics (NSS); Meta-
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1 Introduction 

Assessing digitaӏ picture quаӏіty in а manner that mimics human visual perсeрtion is 

thе gоaӏ of image Quality Assеssment (IQA) . It is gеneraӏly seрarated into two cаtego-

ries: objective methods , which еmpӏоy algorithms , and subjective methods, which 

depend on human judgmеnts [1] . Depending оn whether a reference іmage is availabӏe, 

objectіve IQA cаn be full-reference (FR) , rеduced-reference (RR), or no-reference 

(NR) [2] .The аpplication determines which approach is best, such аs the need for аes-

thetics in phоtography versus the need for precise diagnosis in medical imаging [1] . 

This study offеrs a thorough analysis of IQA techniques, following their deveӏopment 

frоm transform-based and statistical methods to dеeр ӏearning models such as CNNs 

and transformers . Рarticular attention is paid to mеdіcal іmaging sincе precise quality 

evaluation direсtly affeсts clinical outcomes . 

 

The remainder of the paper is organized as follows: Section 2 reviews early IQA 

techniques based on statistical models and the Human Visual System (HVS). Section 3 

focuses on transform-domain methods and Natural Scene Statistics (NSS) models. Sec-

tion 4 presents traditional machine learning approaches for IQA, such as feature-based 
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regression models. Section 5 discusses the advent of deep learning using Convolutional 

Neural Networks (CNNs). Section 6 introduces transformer-based architectures and 

their benefits for perceptual modeling. Section 7 explores modern framework-based 

methods that enhance robustness and generalization using transfer learning, meta-learn-

ing, and self-supervised learning. Finally, section 8 concludes the paper and outlines 

future directions for developing robust IQA systems tailored to medical imaging needs. 

2 (Early 2000s) Statistical and HVS-based methods 

In the early 2000s, Image Quality Assessment (IQA) methods largely relied on objec-

tive statistical metrics and models inspired by the Human Visual System (HVS) [47]. 

Objective techniques aim to quantify image fidelity through physical measurements 

and algorithmic predictions. Among these, spatial resolution is typically assessed using 

the Modulation Transfer Function (MTF), which measures the system's ability to re-

produce fine image details. Contrast resolution, which is critical in distinguishing tis-

sues with similar densities, is often evaluated via the Contrast-to-Noise Ratio (CNR). 

Noise characteristics are also essential and can be captured using metrics such as the 

Noise Power Spectrum (NPS) or the Signal-to-Noise Ratio (SNR). Additionally, the 

presence of artifacts, which are unwanted distortions that may hinder diagnostic inter-

pretation, is a vital consideration in medical imaging quality. 

Traditional full-reference (FR) metrics, such as Mean Squared Error (MSE) and 

Peak Signal-to-Noise Ratio (PSNR), have been widely adopted due to their mathemat-

ical simplicity, computational efficiency, and interpretability [3][4]. However, despite 

these advantages, such metrics often fail to correlate with human visual perception, 

particularly in medical imaging, where diagnostic relevance and visual nuance are crit-

ical. 

To bridge this gap, HVS-based approaches emerged, aiming to better model the per-

ceptual mechanisms of the human visual system. One of the most influential contribu-

tions in this area is the Structural Similarity Index Measure (SSIM) which evaluates 

local structures in pixel intensity patterns while accounting for luminance and contrast 

[5]. SSIM is based on the idea that structural information aligns more closely with hu-

man perception than pixel-wise differences. 

In addition to full-reference methods, reduced-reference (RR) techniques were de-

veloped to estimate image quality with partial information from the original image. For 

example, methods introduced by Wang and Simoncelli extract perceptually relevant 

features from the reference image to reduce the need for full data transmission, which 

is especially valuable in bandwidth-limited environments [6]. 

Despite advancements in both statistical and HVS-based methods, the objective met-

rics often fail to fully capture subjective human perception or clinical utility, especially 

in domains like medical imaging, where nuanced visual cues can significantly affect 

diagnostic accuracy. 
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3 (Mid 2000s-2012) Transform domain and natural scene 

statistics-based methods 

During the mid-2000s to early 2010s, Image Quality Assessment (IQA) research ex-

panded significantly with introducing the techniques that leveraged transform domain 

representations and natural scene statistics (NSS). These methods aimed to better cap-

ture the perceptual characteristics of images by analyzing them in frequency or statisti-

cal domains, beyond simple pixel-based comparisons. 

3.1 Transform domain methods 

Full-reference (FR) IQA techniques in this period began by applying transformations 

such as the Discrete Cosine Transform (DCT), wavelet transform, or Singular Value 

Decomposition (SVD) to extract structural features from both reference and distorted 

images. For example, the method proposed in [7] uses the wavelet domain to quantify 

changes induced by distortion in wavelet coefficients. Other methods such as SFF [8] 

and QASD [9] apply sparse representations to model important image features and es-

timate perceptual quality. 

In the no-reference (NR) setting, approaches like BLIINDS-II [10] analyze the sta-

tistical distribution of DCT coefficients affected by distortions. 

3.2 Natural Scene Statistics (NSS)-based methods 

NSS-based approaches assume that undistorted natural images follow specific statisti-

cal regularities, and deviations from these patterns can signal quality degradation. As 

an example, the Information Fidelity Criterion (IFC) [11], which compares the mutual 

information between reference and distorted images. Another example is the Tone-

Mapped Image Quality Index (TMQI) [12], which combines Structural Similarity Index 

Measure (SSIM) [5] with NSS-based naturalness measures to assess tone-mapped im-

ages, frequently used in high dynamic range (HDR) applications. 

These methods demonstrate that both frequency-domain transformations and statis-

tical modeling of natural scenes offer powerful tools for capturing perceptual aspects 

of image quality, particularly when traditional pixel-level metrics fail. 

 

Table 1 and Fig. 1 summarize and represent key statistical, HVS-based, transform 

domain, and NSS methods along with their citation counts, highlighting their historical 

impact (data sourced from Google Scholar, April 2025). 
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Table 1. Stat/HVS/NSS/TD-Methods with citation count (sourced from Google Scholar April, 

2025). 

Metric Citation 

Count 

Year Description 

SSIM 58352 2004 Evaluates structural similarity. 

MS-SSIM 8043 2004 Multiscale version of SSIM. 

IFC 1721 2005 Information fidelity criterion. 

PSNR-HVS 433 2006 Perceptual variant of PSNR. 

IW-SSIM 1533 2010 Information-weighted SSIM. 

FSIM 5512 2011 Uses phase congruency and gradient magnitude. 

GSIM 872 2011 Gradient similarity index. 

BLIINDS-II 1912 2012 DCT statistics-based method. 

TMQI 720 2012 Tone-Mapped image quality index. 

 

Fig. 1. A representative graph of Table 1. 

4 (2011-2015) Traditional machine learning approaches 

The period from 2011 to 2015 witnessed the integration of traditional machine learning 

techniques into Image Quality Assessment (IQA), significantly advancing the field, 

particularly in medical imaging contexts. Machine learning (ML) models began to offer 

more flexible, perceptually aligned, and data-driven evaluations of image quality, re-

ducing reliance on hand-crafted metrics or subjective assessments. 

In the context of Medical Image Quality Assessment (MIQA), AI-based systems 

help automate routine image quality checks, reduce noise and artifacts, and ensure con-

sistency across assessments. Rather than replacing radiologists, these tools act as assis-

tive technologies, freeing clinicians from repetitive tasks and allowing them to concen-

trate on complex diagnostic decisions. 

In the FR domain, Multimethod Fusion (MMF) [13] and ParaBoost [14] combined 

outputs from multiple specialized metrics to capture a broader spectrum of distortions. 
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For NR IQA, Natural Scene Statistics (NSS) have become foundational. Approaches 

such as: DIIVINE [15], which extracts NSS features and uses support vector regression 

for quality prediction; ILNIQE [16], which models multivariate Gaussian distributions 

over NSS features; and BRISQUE [17], which uses multi-scale NSS features for low-

complexity, high-performance quality estimation; all contribute significantly to IQA 

without requiring a reference image, an essential capability for real-time or clinical use 

cases. 

These models marked a shift from static, handcrafted approaches to more adaptive, 

learning-based systems that better align with human perception and diagnostic require-

ments. The ability to operate in blind (NR) conditions made them particularly attractive 

for deployment in healthcare and mobile imaging systems. 

Table 2 and Fig. 2 provide a comparative summary and representation of prominent 

ML-based IQA methods, including citation counts as of April 2025 (source: Google 

Scholar). 

Table 2. ML-Methods with citation count (sourced from Google Scholar April, 2025). 

Metric Citation 

Count 

Year Description 

DIIVINE 2003 2011 NSS + SVM for distortion classification. 

BRISQUE 5733 2012 Multiscale NSS with low complexity. 

MMF 216 2012 Multi-method fusion using SVR. 

IL-NIQE 1214 2015 MVG model using NSS. 

ParaBoost 86 2015 Distortion-adaptive fusion approach. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. A representative graph of Table 2. 
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5 (2014-2022) CNN-based deep learning 

Deep learning, particularly Convolutional Neural Networks (CNNs), has revolution-

ized Image Quality Assessment (IQA) by enabling end-to-end learning of complex im-

age features. since the introduction of IQACNN [18], CNN-based models have demon-

strated superior performance in both no-reference (NR) and full-reference (FR) set-

tings. Their ability to automatically learn hierarchical representations directly from im-

age data makes them especially effective for tasks like noise reduction, artifact detec-

tion, and perceptual quality scoring. 

5.1 No-Reference (NR) IQA 

In blind IQA, CNNs have enabled accurate quality prediction without reference images. 

As examples, Bosse et al. [19] introduced a Siamese CNN architecture trained on hu-

man opinion scores, and MEON [21] provides an end-to-end quality prediction pipe-

line. RankIQA [20] uses pairwise ranking with Siamese networks to infer relative im-

age quality. These approaches allow models to learn perceptual differences directly 

from training data. 

5.2 Full-Reference (FR) IQA 

In the FR domain, CNNs like SRIF [22] and DR-IQA [23], leverage learned feature 

embeddings and multi-level descriptors to compare pristine and distorted images. These 

models improve upon traditional metrics by learning more robust representations 

aligned with perceptual fidelity. 

5.3 Reduced-Reference (RR) IQA 

CNNs have also advanced RR IQA. CVRKD-IQA [24] employs knowledge distillation 

to train networks that are more tolerant of content variations, thus reducing the need for 

exact reference alignment. Thong et al. [25] proposed content-diverse image pairings 

to train models that generalize across different scenes and structures. 

5.4 Applications in medical imaging 

The impact of CNNs on Medical Image Quality Assessment (MIQA) has been partic-

ularly significant. CNNs are employed to denoise CT images, enhancing diagnostic 

clarity, and to detect and classify artifacts in MRI scans, improving their interpretabil-

ity. CNN-based systems have also been used for automated quality grading in complex 

modalities like whole-heart MRI, mimicking the visual evaluation performed by expert 

radiologists. Their ability to bypass manual feature engineering and learn directly from 

pixel data is a substantial advantage in clinical environments. 
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5.5 Emerging CNN-based blind IQA 

Recent blind IQA models further illustrate the adaptability of CNNs. NIMA [26] adapts 

popular CNN backbones (e.g., VGG [27], Inception v2 [28], and MobileNet [27]) for 

perceptual quality scoring. GIQA [29] transforms regression into a set of binary classi-

fication tasks under varying thresholds to increase robustness to label noise. Other 

methods, such as DB-CNN [30] and HyperIQA [31], refine architecture and training 

processes to specialize in distortion-specific or content-aware quality estimation. 

The rapid growth of CNN-based IQA research highlights their critical role in ad-

vancing perceptual, consistent, and scalable quality assessment systems across do-

mains. A summary of these approaches and their citation impact is provided in Table 3 

and Fig. 3 (based on Google Scholar data, April 2025). 

Table 3. CNN-based approaches with citation count (sourced from Google Scholar April, 

2025). 

Metric Citation 

Count 

Year Description 

IQACNN 1400 2014 CNNs for no-reference image quality assessment. 

IL-NIQE 1214 2015 MVG model using NSS. 

RankIQA 500 2017 
Learns from rankings for no-reference image quality 

assessment. 

MEON 700 2017 End-to-end blind IQA with a multi-task CNN. 

Bosse et al. 1000 2017 Data-driven NR-IQA using a Siamese network. 

DB-CNN 700 2018 
Uses a custom CNN for artificial distortions and bilin-

ear pooling for NR-IQA. 

NIMA 2800 2018 
Adapts various CNN networks (VGG, Inception, Mo-

bileNet) for NR-IQA. 

GIQA 300 2020 
Converts regression to binary classification for robust 

NR-IQA. 

HyperIQA 600 2020 
Creates a hyper network to adaptively generate 

weights for NR-IQA. 

DR-IQA 200 2021 Trains a degradation-tolerant embedding for FR-IQA. 

Thong et al. 30 2022 Content-diverse comparisons improve IQA. 

SRIF 100 2022 Multi-level pyramid feature descriptor for FR-IQA. 

CVRKD-IQA 100 2022 
Uses knowledge distillation for content-tolerant RR-

IQA features. 
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Fig. 3. A representative graph of Table 3. 

6 (2021-Now) Transformer-based deep learning 

Beyond traditional Convolutional Neural Networks (CNNs), recent deep learning ad-

vancements have introduced more sophisticated architectures, such as U-Net, ResNet, 

and Transformer-based models, that are substantially reshaping the Medical Image 

Quality Assessment (MIQA) field. While CNNs have achieved significant success by 

learning hierarchical image features, these new models offer improved capabilities in 

capturing long-range spatial dependencies and global contextual information, which are 

critical for robust and perceptually aligned image quality evaluation [48]. 

U-Net with its variants, originally designed for medical image segmentation, have 

been successfully repurposed for MIQA tasks. Their symmetric encoder-decoder struc-

ture helps preserve spatial resolution, enabling targeted quality assessment in clinically 

relevant regions such as tumors or organ boundaries [48]. Also, ResNet architectures, 

known for their use of residual connections, allow deep network training and are effec-

tive for extracting fine-grained features. This enhances classification and scoring of 

subtle variations in medical images [49]. 

More recently, Transformer-based architectures, particularly Vision Transformers 

(ViTs) [36], have emerged as powerful alternatives to CNNs for IQA tasks. Unlike 

CNNs, which are often constrained by fixed input sizes and local receptive fields, 

Transformers model long-range dependencies and integrate global image context more 
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effectively [49]. In the no-reference (NR) IQA domain, models like TRIQ [32] leverage 

Transformers for processing images of varying resolutions without losing spatial fidel-

ity. Their multi-head self-attention mechanisms allow precise detection of quality-de-

grading artifacts that might be missed by local convolutional filters. 

Building on this foundation, MUSIQ [37] introduces learnable scale encodings and 

2D hashed positional encodings for better capturing multi-scale spatial dependencies. 

DEIQT [38] improves the quality prediction process by applying quality-aware decod-

ing to Transformer outputs. MANIQA [39] combines Swin Transformer layers to inte-

grate both local attention and global encoding, thereby enhancing its performance on 

complex distortions. 

In the full-reference (FR) IQA domain, Transformer-based models also show strong 

potential. IQT [33], for example, uses attention mechanisms to refine feature represen-

tations after fusing pristine and distorted image inputs. JSPL [34] employs spatial at-

tention to reweight distance maps. AHIQ [35] merges CNNs with ViTs, extracting low-

level features using a shallow CNN module and capturing spatial correlations and 

higher-order dependencies through Transformer layers. 

Notably, Transformer-based IQA models, particularly those built on ViT frame-

works, have outperformed conventional architectures in benchmark challenges such as 

the NTIRE 2021 and 2022 Perceptual IQA Challenges [40][41]. These results under-

score the growing maturity and effectiveness of Transformer-based approaches in both 

NR and FR settings. A summary of these methods and their scholarly impact is pro-

vided in Table 4 and Fig. 4. 

Table 4. Transformer-based approaches with citation count (sourced from Google Scholar 

April, 2025). 

Metric Citation 

Count 

Year Description 

TRIQ 230 2020 Transformer for resolution-agnostic IQA. 

MUSIQ 601 2021 Handles multi-scale and varied aspect ratio images. 

DEIQT 50 2021 
interpretation task using a Transformer to extract qual-

ity-aware features. 

IQT 167 2021 Siamese ViT for FR-IQA. 

JSPL 57 2022 
reweight the distance map between query and refer-

ence images. 

Maniqa 301 2022 Multi-dimension attention (ViT + Swin). 

AHIQ 113 2022 
Combining a shallow CNN for details with ViT for 

capturing spatial correlations. 

TRIQ 230 2020 Transformer for resolution-agnostic IQA. 
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Fig. 4. A representative graph of Table 4. 

7 (2021-Now) Framework-based methods 

Recent advancements in deep learning have catalyzed the emergence of increasingly 

sophisticated training paradigms tailored to the unique challenges of Medical Image 

Quality Assessment (MIQA). Current research focuses on the development of adaptive 

frameworks that address persistent issues such as data scarcity, domain specificity, and 

distortion variability in MI. These frameworks are designed to enhance the generaliza-

bility, robustness, and clinical applicability of MIQA models. The main methodologies 

driving this shift include: 

• Transfer learning: extensively applied in ultrasound image quality assessment. 

It involves leveraging features learned from large-scale natural image datasets 

and adapting them to smaller, domain-specific medical datasets. This strategy 

improves model performance, especially in scenarios where annotated medi-

cal image data is limited [42]. 

• Meta-learning: introduced in works such as MetaIQA [43], meta-learning 

trains models to “learn how to learn” across various distortion types. This hu-

man-inspired generalization enables models to handle previously unseen or 

rare distortion patterns, making it particularly valuable for robust MIQA. 

• Cross-distortion generalization: Frameworks like UNIQUE [44] address the 

challenge of distortion diversity by training a single blind IQA (BIQA) model 

on multiple datasets with varied distortion types. This multi-task learning ap-

proach facilitates discovering of shared quality-related features, improving 

generalization across different imaging conditions and modalities. 

• Weakly supervised learning: The DeepFL-IQA framework [45] demonstrates 

how weak supervision can reduce dependence on extensive subjective 
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annotations. The model is initially trained using objective image quality met-

rics (e.g., PSNR, SSIM), and then fine-tuned with a limited number of human-

provided scores. This dual-stage approach strikes a balance between compu-

tational efficiency and perceptual accuracy. 

• Self-supervised learning: CONTRIQUE [46] exemplifies the use of self-su-

pervised learning (SSL) in MIQA. By solving pretext tasks, such as predicting 

spatial arrangements or transformations, the model learns robust, quality-

aware representations without labeled data. These embeddings can be success-

fully transferred to downstream quality prediction tasks. 

These new lеarning approachеs represеnt a major shift in MIQA , offering scаlable 

and perceptualӏy accurate solutions , espеciаlly for no-refеrеnce model . By reduсing 

annotаtion needs and improving adaptabiӏity , they enablе clіniсally rеlevant IQA sys-

tems suitable for real-world diаgnostіcs. 

Table 5 and Fig. 5 summarize and represent key framework-based approaches and 

their impact, including citation counts (as of April 2025, sourced from Google Scholar). 

Table 5. Framework-based approaches with citation count (sourced from Google Scholar April, 

2025). 

Metric Citation 

Count 

Year Description 

CNN-based Medical Ultra-

sound IQA 
21 2021 Transfer Learning 

MetaIQA 405 2020 Meta-Learning 

UNIQUE 286 2021 Cross-Distortion Generalization 

DeepFL-IQA 71 2020 Weakly Supervised Learning 

CONTRIQUE 206 2022 Self-Supervised Learning 

Fig. 5. A representative graph of Table 5. 
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8 Conclusion 

Image Quality Assessment (IQA), especially in the medical domain, is increasingly 

vital for advancing healthcare outcomes and broader imaging applications. High-qual-

ity images are essential for accurate diagnosis, effective treatment planning, and relia-

ble patient monitoring. While traditional objective metrics, such as PSNR and SSIM, 

have long been favored for their simplicity and interpretability, the emergence of arti-

ficial intelligence, particularly deep learning, has transformed the field by enabling 

faster, more consistent, and scalable assessment techniques. 

This survey has systematically reviewed the progression of IQA technologies, high-

lighting both general-purpose and domain-specific approaches. Although deep learning 

methods consistently outperform classical ones in terms of predictive accuracy, their 

deployment is often hampered by challenges such as complex implementation, low in-

terpretability, and dependency on large annotated datasets. Consequently, traditional 

techniques remain relevant in practical scenarios where simplicity and transparency are 

prioritized. 

In medical imaging, task-specific requirements, such as lesion visibility or organ 

boundary clarity, are central to quality assessment, unlike in other domains (e.g., facial 

aesthetics in portrait photography). Therefore, IQA research must evolve in alignment 

with application-specific needs. For example, dehazing algorithms should prioritize 

contrast and color fidelity, whereas deblurring models must mitigate artifacts like ring-

ing and ghosting. 

The successful integration of AI into IQA workflows also depends on addressing 

critical issues such as algorithmic bias, ethical decision-making, and standardization 

across imaging systems. Additionally, the quality, size, and diversity of training da-

tasets remain fundamental to building robust and generalizable models. 

Looking ahead, the IQA field is poised for further innovation through the develop-

ment of more interpretable and efficient models, the integration of multimodal data, 

and the design of customized quality metrics. Bridging the gap between technical per-

formance, clinical practicality, and user-centered design will be essential to advancing 

IQA technologies across domains. By embracing these advancements while thought-

fully managing associated challenges, the research and clinical communities can fully 

harness intelligent image quality assessment to improve outcomes, optimize work-

flows, and enhance user satisfaction. 
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Fig. 6 provides a representative timeline highlighting major milestones and trends in 

the evolution of IQA research and technologies. 

 

Fig. 6. A representative time-line of IQA 
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