A Historical Overview of Image Quality Assessment
Methods: Focus on Medical Imaging Applications

Abstract. This paper provides a comprehensive review of Image Quality Assess-
ment (IQA) methods, tracing their historical development from early conven-
tional metrics to modern deep learning-based approaches. First, it describes fun-
damental subjective and objective techniques, including full-reference, reduced-
reference, and no-reference methods. Then, the review examines major advance-
ments across different eras, including HVS-based models, transform-domain and
natural scene statistics techniques, and traditional machine learning approaches.
Special attention is given to recent deep learning innovations, particularly con-
volutional neural networks (CNNSs), vision transformers, and modern training
paradigms such as transfer learning, meta-learning, and self-supervised learning.
The survey emphasizes the applications in medical imaging, where accurate and
robust IQA is critical for reliable diagnosis and clinical decision-making. Finally,
the paper highlights ongoing challenges and outlines future research directions
for building medically effective and reliable 1QA systems. This paper aims at
serving as a comprehensive reference for researchers seeking to understand ex-
isting approaches, identify limitations, and develop new solutions tailored to do-
main-specific needs.
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1 Introduction

Assessing digital picture quality in a manner that mimics human visual perception is
the goal of image Quality Assessment (IQA) . It is generally separated into two catego-
ries: objective methods , which employ algorithms , and subjective methods, which
depend on human judgments [1] . Depending on whether a reference image is available,
objective IQA can be full-reference (FR) , reduced-reference (RR), or no-reference
(NR) [2] .The application determines which approach is best, such as the need for aes-
thetics in photography versus the need for precise diagnosis in medical imaging [1] .
This study offers a thorough analysis of IQA techniques, following their development
from transform-based and statistical methods to deep learning models such as CNNs
and transformers . Particular attention is paid to medical imaging since precise quality
evaluation directly affects clinical outcomes .

The remainder of the paper is organized as follows: Section 2 reviews early IQA
techniques based on statistical models and the Human Visual System (HVS). Section 3
focuses on transform-domain methods and Natural Scene Statistics (NSS) models. Sec-
tion 4 presents traditional machine learning approaches for IQA, such as feature-based



regression models. Section 5 discusses the advent of deep learning using Convolutional
Neural Networks (CNNs). Section 6 introduces transformer-based architectures and
their benefits for perceptual modeling. Section 7 explores modern framework-based
methods that enhance robustness and generalization using transfer learning, meta-learn-
ing, and self-supervised learning. Finally, section 8 concludes the paper and outlines
future directions for developing robust IQA systems tailored to medical imaging needs.

2 (Early 2000s) Statistical and HVS-based methods

In the early 2000s, Image Quality Assessment (IQA) methods largely relied on objec-
tive statistical metrics and models inspired by the Human Visual System (HVS) [47].
Objective techniques aim to quantify image fidelity through physical measurements
and algorithmic predictions. Among these, spatial resolution is typically assessed using
the Modulation Transfer Function (MTF), which measures the system's ability to re-
produce fine image details. Contrast resolution, which is critical in distinguishing tis-
sues with similar densities, is often evaluated via the Contrast-to-Noise Ratio (CNR).
Noise characteristics are also essential and can be captured using metrics such as the
Noise Power Spectrum (NPS) or the Signal-to-Noise Ratio (SNR). Additionally, the
presence of artifacts, which are unwanted distortions that may hinder diagnostic inter-
pretation, is a vital consideration in medical imaging quality.

Traditional full-reference (FR) metrics, such as Mean Squared Error (MSE) and
Peak Signal-to-Noise Ratio (PSNR), have been widely adopted due to their mathemat-
ical simplicity, computational efficiency, and interpretability [3][4]. However, despite
these advantages, such metrics often fail to correlate with human visual perception,
particularly in medical imaging, where diagnostic relevance and visual nuance are crit-
ical.

To bridge this gap, HVS-based approaches emerged, aiming to better model the per-
ceptual mechanisms of the human visual system. One of the most influential contribu-
tions in this area is the Structural Similarity Index Measure (SSIM) which evaluates
local structures in pixel intensity patterns while accounting for luminance and contrast
[5]. SSIM is based on the idea that structural information aligns more closely with hu-
man perception than pixel-wise differences.

In addition to full-reference methods, reduced-reference (RR) techniques were de-
veloped to estimate image quality with partial information from the original image. For
example, methods introduced by Wang and Simoncelli extract perceptually relevant
features from the reference image to reduce the need for full data transmission, which
is especially valuable in bandwidth-limited environments [6].

Despite advancements in both statistical and HVS-based methods, the objective met-
rics often fail to fully capture subjective human perception or clinical utility, especially
in domains like medical imaging, where nuanced visual cues can significantly affect
diagnostic accuracy.



3 (Mid 2000s-2012) Transform domain and natural scene
statistics-based methods

During the mid-2000s to early 2010s, Image Quality Assessment (IQA) research ex-
panded significantly with introducing the techniques that leveraged transform domain
representations and natural scene statistics (NSS). These methods aimed to better cap-
ture the perceptual characteristics of images by analyzing them in frequency or statisti-
cal domains, beyond simple pixel-based comparisons.

3.1 Transform domain methods

Full-reference (FR) IQA techniques in this period began by applying transformations
such as the Discrete Cosine Transform (DCT), wavelet transform, or Singular Value
Decomposition (SVD) to extract structural features from both reference and distorted
images. For example, the method proposed in [7] uses the wavelet domain to quantify
changes induced by distortion in wavelet coefficients. Other methods such as SFF [8]
and QASD [9] apply sparse representations to model important image features and es-
timate perceptual quality.

In the no-reference (NR) setting, approaches like BLIINDS-11 [10] analyze the sta-
tistical distribution of DCT coefficients affected by distortions.

3.2 Natural Scene Statistics (NSS)-based methods

NSS-based approaches assume that undistorted natural images follow specific statisti-
cal regularities, and deviations from these patterns can signal quality degradation. As
an example, the Information Fidelity Criterion (IFC) [11], which compares the mutual
information between reference and distorted images. Another example is the Tone-
Mapped Image Quality Index (TMQI) [12], which combines Structural Similarity Index
Measure (SSIM) [5] with NSS-based naturalness measures to assess tone-mapped im-
ages, frequently used in high dynamic range (HDR) applications.

These methods demonstrate that both frequency-domain transformations and statis-
tical modeling of natural scenes offer powerful tools for capturing perceptual aspects
of image quality, particularly when traditional pixel-level metrics fail.

Table 1 and Fig. 1 summarize and represent key statistical, HVS-based, transform
domain, and NSS methods along with their citation counts, highlighting their historical
impact (data sourced from Google Scholar, April 2025).



Table 1. Stat/HVS/NSS/TD-Methods with citation count (sourced from Google Scholar April,

2025).
Metric Citation Year Description
Count
SSIM 58352 2004 Evaluates structural similarity.
MS-SSIM 8043 2004 Multiscale version of SSIM.
IFC 1721 2005 Information fidelity criterion.
PSNR-HVS 433 2006 Perceptual variant of PSNR.
IW-SSIM 1533 2010 Information-weighted SSIM.
FSIM 5512 2011 Uses phase congruency and gradient magnitude.
GSIM 872 2011 Gradient similarity index.
BLIINDS-II 1912 2012 DCT statistics-based method.
TMQI 720 2012 Tone-Mapped image quality index.
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Fig. 1. A representative graph of Table 1.

4 (2011-2015) Traditional machine learning approaches

The period from 2011 to 2015 witnessed the integration of traditional machine learning
techniques into Image Quality Assessment (IQA), significantly advancing the field,
particularly in medical imaging contexts. Machine learning (ML) models began to offer
more flexible, perceptually aligned, and data-driven evaluations of image quality, re-
ducing reliance on hand-crafted metrics or subjective assessments.

In the context of Medical Image Quality Assessment (MIQA), Al-based systems
help automate routine image quality checks, reduce noise and artifacts, and ensure con-
sistency across assessments. Rather than replacing radiologists, these tools act as assis-
tive technologies, freeing clinicians from repetitive tasks and allowing them to concen-
trate on complex diagnostic decisions.

In the FR domain, Multimethod Fusion (MMF) [13] and ParaBoost [14] combined
outputs from multiple specialized metrics to capture a broader spectrum of distortions.



For NR IQA, Natural Scene Statistics (NSS) have become foundational. Approaches
such as: DIIVINE [15], which extracts NSS features and uses support vector regression
for quality prediction; ILNIQE [16], which models multivariate Gaussian distributions
over NSS features; and BRISQUE [17], which uses multi-scale NSS features for low-
complexity, high-performance quality estimation; all contribute significantly to 1QA
without requiring a reference image, an essential capability for real-time or clinical use
cases.

These models marked a shift from static, handcrafted approaches to more adaptive,
learning-based systems that better align with human perception and diagnostic require-
ments. The ability to operate in blind (NR) conditions made them particularly attractive
for deployment in healthcare and mobile imaging systems.

Table 2 and Fig. 2 provide a comparative summary and representation of prominent
ML-based IQA methods, including citation counts as of April 2025 (source: Google
Scholar).

Table 2. ML-Methods with citation count (sourced from Google Scholar April, 2025).

Metric Citation Year Description
Count
DIIVINE 2003 2011 NSS + SVM for distortion classification.
BRISQUE 5733 2012 Multiscale NSS with low complexity.
MMF 216 2012 Multi-method fusion using SVR.
IL-NIQE 1214 2015 MVG model using NSS.
ParaBoost 86 2015 Distortion-adaptive fusion approach.
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Fig. 2. A representative graph of Table 2.



5 (2014-2022) CNN-based deep learning

Deep learning, particularly Convolutional Neural Networks (CNNs), has revolution-
ized Image Quality Assessment (IQA) by enabling end-to-end learning of complex im-
age features. since the introduction of IQACNN [18], CNN-based models have demon-
strated superior performance in both no-reference (NR) and full-reference (FR) set-
tings. Their ability to automatically learn hierarchical representations directly from im-
age data makes them especially effective for tasks like noise reduction, artifact detec-
tion, and perceptual quality scoring.

5.1 No-Reference (NR) IQA

Inblind IQA, CNNs have enabled accurate quality prediction without reference images.
As examples, Bosse et al. [19] introduced a Siamese CNN architecture trained on hu-
man opinion scores, and MEON [21] provides an end-to-end quality prediction pipe-
line. RankIQA [20] uses pairwise ranking with Siamese networks to infer relative im-
age quality. These approaches allow models to learn perceptual differences directly
from training data.

5.2  Full-Reference (FR) IQA

In the FR domain, CNNs like SRIF [22] and DR-IQA [23], leverage learned feature
embeddings and multi-level descriptors to compare pristine and distorted images. These
models improve upon traditional metrics by learning more robust representations
aligned with perceptual fidelity.

5.3  Reduced-Reference (RR) IQA

CNNs have also advanced RR IQA. CVRKD-IQA [24] employs knowledge distillation
to train networks that are more tolerant of content variations, thus reducing the need for
exact reference alignment. Thong et al. [25] proposed content-diverse image pairings
to train models that generalize across different scenes and structures.

5.4  Applications in medical imaging

The impact of CNNs on Medical Image Quality Assessment (MIQA) has been partic-
ularly significant. CNNs are employed to denoise CT images, enhancing diagnostic
clarity, and to detect and classify artifacts in MRI scans, improving their interpretabil-
ity. CNN-based systems have also been used for automated quality grading in complex
modalities like whole-heart MRI, mimicking the visual evaluation performed by expert
radiologists. Their ability to bypass manual feature engineering and learn directly from
pixel data is a substantial advantage in clinical environments.



5.5  Emerging CNN-based blind IQA

Recent blind IQA models further illustrate the adaptability of CNNs. NIMA [26] adapts
popular CNN backbones (e.g., VGG [27], Inception v2 [28], and MobileNet [27]) for
perceptual quality scoring. GIQA [29] transforms regression into a set of binary classi-
fication tasks under varying thresholds to increase robustness to label noise. Other
methods, such as DB-CNN [30] and HyperlQA [31], refine architecture and training
processes to specialize in distortion-specific or content-aware quality estimation.

The rapid growth of CNN-based IQA research highlights their critical role in ad-
vancing perceptual, consistent, and scalable quality assessment systems across do-
mains. A summary of these approaches and their citation impact is provided in Table 3
and Fig. 3 (based on Google Scholar data, April 2025).

Table 3. CNN-based approaches with citation count (sourced from Google Scholar April,

2025).
Metric Citation Year Description
Count
IQACNN 1400 2014  CNNs for no-reference image quality assessment.
IL-NIQE 1214 2015 MVG model using NSS.
Learns from rankings for no-reference image quality
RankIQA 500 2017
assessment.
MEON 700 2017  End-to-end blind IQA with a multi-task CNN.
Bosse et al. 1000 2017 Data-driven NR-IQA using a Siamese network.
Uses a custom CNN for artificial distortions and bilin-
DB-CNN 700 2018 .
ear pooling for NR-1QA.
Adapts various CNN networks (VGG, Inception, Mo-
NIMA 2800 2018 .
bileNet) for NR-IQA.
Converts regression to binary classification for robust
GIQA 300 2020
NR-IQA.
Creates a hyper network to adaptively generate
HyperlQA 600 2020 .
weights for NR-1QA.
DR-IQA 200 2021  Trains a degradation-tolerant embedding for FR-1QA.
Thong et al. 30 2022  Content-diverse comparisons improve IQA.
SRIF 100 2022 Multi-level pyramid feature descriptor for FR-IQA.
Uses knowledge distillation for content-tolerant RR-
CVRKD-IQA 100 2022

1QA features.
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Fig. 3. A representative graph of Table 3.

6 (2021-Now) Transformer-based deep learning

Beyond traditional Convolutional Neural Networks (CNNSs), recent deep learning ad-
vancements have introduced more sophisticated architectures, such as U-Net, ResNet,
and Transformer-based models, that are substantially reshaping the Medical Image
Quiality Assessment (MIQA) field. While CNNs have achieved significant success by
learning hierarchical image features, these new models offer improved capabilities in
capturing long-range spatial dependencies and global contextual information, which are
critical for robust and perceptually aligned image quality evaluation [48].

U-Net with its variants, originally designed for medical image segmentation, have
been successfully repurposed for MIQA tasks. Their symmetric encoder-decoder struc-
ture helps preserve spatial resolution, enabling targeted quality assessment in clinically
relevant regions such as tumors or organ boundaries [48]. Also, ResNet architectures,
known for their use of residual connections, allow deep network training and are effec-
tive for extracting fine-grained features. This enhances classification and scoring of
subtle variations in medical images [49].

More recently, Transformer-based architectures, particularly Vision Transformers
(ViTs) [36], have emerged as powerful alternatives to CNNs for IQA tasks. Unlike
CNNs, which are often constrained by fixed input sizes and local receptive fields,
Transformers model long-range dependencies and integrate global image context more



effectively [49]. In the no-reference (NR) IQA domain, models like TRIQ [32] leverage
Transformers for processing images of varying resolutions without losing spatial fidel-
ity. Their multi-head self-attention mechanisms allow precise detection of quality-de-
grading artifacts that might be missed by local convolutional filters.

Building on this foundation, MUSIQ [37] introduces learnable scale encodings and
2D hashed positional encodings for better capturing multi-scale spatial dependencies.
DEIQT [38] improves the quality prediction process by applying quality-aware decod-
ing to Transformer outputs. MANIQA [39] combines Swin Transformer layers to inte-
grate both local attention and global encoding, thereby enhancing its performance on
complex distortions.

In the full-reference (FR) IQA domain, Transformer-based models also show strong
potential. 1QT [33], for example, uses attention mechanisms to refine feature represen-
tations after fusing pristine and distorted image inputs. JSPL [34] employs spatial at-
tention to reweight distance maps. AHIQ [35] merges CNNs with ViTs, extracting low-
level features using a shallow CNN module and capturing spatial correlations and
higher-order dependencies through Transformer layers.

Notably, Transformer-based 1QA models, particularly those built on ViT frame-
works, have outperformed conventional architectures in benchmark challenges such as
the NTIRE 2021 and 2022 Perceptual IQA Challenges [40][41]. These results under-
score the growing maturity and effectiveness of Transformer-based approaches in both
NR and FR settings. A summary of these methods and their scholarly impact is pro-
vided in Table 4 and Fig. 4.

Table 4. Transformer-based approaches with citation count (sourced from Google Scholar

April, 2025).
Metric Citation Year Description
Count
TRIQ 230 2020  Transformer for resolution-agnostic IQA.
MUSIQ 601 2021  Handles multi-scale and varied aspect ratio images.
interpretation task using a Transformer to extract qual-
DEIQT 50 2021 .
ity-aware features.
1QT 167 2021  Siamese ViT for FR-IQA.
reweight the distance map between query and refer-
JSPL 57 2022 .
ence images.
Maniga 301 2022 Multi-dimension attention (ViT + Swin).
Combining a shallow CNN for details with ViT for
AHIQ 113 2022

capturing spatial correlations.
TRIQ 230 2020  Transformer for resolution-agnostic IQA.
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Fig. 4. A representative graph of Table 4.

(2021-Now) Framework-based methods

Recent advancements in deep learning have catalyzed the emergence of increasingly
sophisticated training paradigms tailored to the unique challenges of Medical Image
Quality Assessment (MIQA). Current research focuses on the development of adaptive
frameworks that address persistent issues such as data scarcity, domain specificity, and
distortion variability in MI. These frameworks are designed to enhance the generaliza-
bility, robustness, and clinical applicability of MIQA models. The main methodologies
driving this shift include:

Transfer learning: extensively applied in ultrasound image quality assessment.
It involves leveraging features learned from large-scale natural image datasets
and adapting them to smaller, domain-specific medical datasets. This strategy
improves model performance, especially in scenarios where annotated medi-
cal image data is limited [42].

Meta-learning: introduced in works such as MetalQA [43], meta-learning
trains models to “learn how to learn” across various distortion types. This hu-
man-inspired generalization enables models to handle previously unseen or
rare distortion patterns, making it particularly valuable for robust MIQA.
Cross-distortion generalization: Frameworks like UNIQUE [44] address the
challenge of distortion diversity by training a single blind IQA (BIQA) model
on multiple datasets with varied distortion types. This multi-task learning ap-
proach facilitates discovering of shared quality-related features, improving
generalization across different imaging conditions and modalities.

Weakly supervised learning: The DeepFL-1QA framework [45] demonstrates
how weak supervision can reduce dependence on extensive subjective
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annotations. The model is initially trained using objective image quality met-
rics (e.g., PSNR, SSIM), and then fine-tuned with a limited number of human-
provided scores. This dual-stage approach strikes a balance between compu-
tational efficiency and perceptual accuracy.

e  Self-supervised learning: CONTRIQUE [46] exemplifies the use of self-su-
pervised learning (SSL) in MIQA. By solving pretext tasks, such as predicting
spatial arrangements or transformations, the model learns robust, quality-
aware representations without labeled data. These embeddings can be success-
fully transferred to downstream quality prediction tasks.

These new learning approaches represent a major shift in MIQA , offering scalable
and perceptually accurate solutions , especially for no-reference model . By reducing
annotation needs and improving adaptability , they enable clinically relevant IQA sys-
tems suitable for real-world diagnostics.

Table 5 and Fig. 5 summarize and represent key framework-based approaches and
their impact, including citation counts (as of April 2025, sourced from Google Scholar).

Table 5. Framework-based approaches with citation count (sourced from Google Scholar April,

2025).
Metric Citation Year Description
Count
CNN-based Medical Ultra- .
2021 Transfer Learning
sound IQA
MetalQA 405 2020 Meta-Learning
UNIQUE 286 2021 Cross-Distortion Generalization
DeepFL-IQA 71 2020 Weakly Supervised Learning
CONTRIQUE 206 2022 Self-Supervised Learning
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Citation Count

IQA Methods
Google Scholar April, 2025

Fig. 5. A representative graph of Table 5.
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8 Conclusion

Image Quality Assessment (IQA), especially in the medical domain, is increasingly
vital for advancing healthcare outcomes and broader imaging applications. High-qual-
ity images are essential for accurate diagnosis, effective treatment planning, and relia-
ble patient monitoring. While traditional objective metrics, such as PSNR and SSIM,
have long been favored for their simplicity and interpretability, the emergence of arti-
ficial intelligence, particularly deep learning, has transformed the field by enabling
faster, more consistent, and scalable assessment techniques.

This survey has systematically reviewed the progression of IQA technologies, high-
lighting both general-purpose and domain-specific approaches. Although deep learning
methods consistently outperform classical ones in terms of predictive accuracy, their
deployment is often hampered by challenges such as complex implementation, low in-
terpretability, and dependency on large annotated datasets. Consequently, traditional
techniques remain relevant in practical scenarios where simplicity and transparency are
prioritized.

In medical imaging, task-specific requirements, such as lesion visibility or organ
boundary clarity, are central to quality assessment, unlike in other domains (e.g., facial
aesthetics in portrait photography). Therefore, IQA research must evolve in alignment
with application-specific needs. For example, dehazing algorithms should prioritize
contrast and color fidelity, whereas deblurring models must mitigate artifacts like ring-
ing and ghosting.

The successful integration of Al into IQA workflows also depends on addressing
critical issues such as algorithmic bias, ethical decision-making, and standardization
across imaging systems. Additionally, the quality, size, and diversity of training da-
tasets remain fundamental to building robust and generalizable models.

Looking ahead, the IQA field is poised for further innovation through the develop-
ment of more interpretable and efficient models, the integration of multimodal data,
and the design of customized quality metrics. Bridging the gap between technical per-
formance, clinical practicality, and user-centered design will be essential to advancing
IQA technologies across domains. By embracing these advancements while thought-
fully managing associated challenges, the research and clinical communities can fully
harness intelligent image quality assessment to improve outcomes, optimize work-
flows, and enhance user satisfaction.
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Fig. 6 provides a representative timeline highlighting major milestones and trends in
the evolution of IQA research and technologies.
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