
Examining Privacy-Utility Tradeoffs in
Differentially Private Medical Image

Classification with Data Augmentation

Rafika Benladghem1, Fethallah Hadjila2, and Adam Belloum3

1 Tlemcen University, Tlemcen. Algeria
rafika.benledghem@univ-tlemcen.dz
2 Tlemcen University, Tlemcen, Algeria
fethallah.hadjila@univ-tlemcen.dz

3 Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands
a.s.z.belloum@uva.nl

Abstract. Privacy protection in medical AI presents fundamental chal-
lenges as healthcare datasets contain highly sensitive patient informa-
tion subject to strict regulatory requirements. While differential privacy
offers rigorous mathematical guarantees for privacy-preserving machine
learning, it typically reduces model performance through noise injec-
tion. Simultaneously, data augmentation addresses critical challenges in
medical imaging including limited training data and class imbalances.
However, the interaction between these widely-used techniques remains
unexplored, creating uncertainty for practitioners implementing privacy-
preserving medical AI systems. This paper presents a systematic em-
pirical study examining how data augmentation affects privacy-utility
tradeoffs in medical image classification. Using the PneumoniaMNIST
dataset for pneumonia detection, we evaluate rotation-based augmenta-
tion combined with differentially private training across privacy budgets
ranging from ϵ = 1.0 to ϵ = 8.0. Our comprehensive experiments reveal
complex non-linear relationships between privacy parameters, augmen-
tation strategies, and model performance. Key findings demonstrate that
moderate privacy budgets (ϵ = 8.0) with rotation augmentation achieve
optimal balance, maintaining 83.8% accuracy while providing meaning-
ful privacy protection. We identify a critical "privacy cliff" below ϵ = 1.0
where utility becomes clinically unacceptable (62.5% accuracy), estab-
lishing practical lower bounds for medical AI applications. Results show
that augmentation-privacy interactions are context-dependent, with aug-
mentation improving baseline performance by 1.2% but yielding mixed
results when combined with privacy mechanisms. These findings provide
evidence-based guidance for healthcare practitioners and policymakers
balancing privacy protection with diagnostic accuracy, establishing prac-
tical privacy budget ranges for medical AI applications.

Keywords: Privacy preserving in deep learning · differential privacy ·
Medical data · Data augmentation.



2 R. Benladghem et al.

1 Introduction

The integration of artificial intelligence in healthcare has transformed medical
diagnosis, with deep learning models achieving remarkable performance in med-
ical image analysis [1]. However, this progress introduces critical privacy chal-
lenges[2][3], as healthcare AI requires access to sensitive patient data subject to
stringent regulations like HIPAA [4] and GDPR [5]. The fundamental tension
between leveraging medical data for AI advancement and protecting patient pri-
vacy creates barriers to healthcare AI development and deployment.

Differential privacy [6] provides mathematically rigorous privacy guarantees
through techniques like differentially private stochastic gradient descent (DP-
SGD) [7], offering formal protection against membership inference attacks [8]
particularly concerning in medical contexts. However, privacy mechanisms re-
duce model performance, creating critical privacy-utility tradeoffs where diag-
nostic accuracy directly impacts patient outcomes [9].

Concurrently, data augmentation addresses medical imaging challenges in-
cluding limited training data[10], expensive clinical annotations[11], and severe
class imbalances[12][13]. Medical augmentation requires domain-specific strate-
gies preserving clinical validity while enhancing model robustness across diverse
patient populations.

Despite widespread use of both techniques in medical AI, their interaction ef-
fects remain poorly understood. Although enhancement may provide additional
training signal despite the injection of privacy noise, the complex interplay be-
tween these approaches could produce unexpected effects on performance and
privacy guarantees [14]. This represents a critical knowledge gap for healthcare
practitioners balancing privacy protection with clinical utility.

This paper presents a systematic empirical study examining how data aug-
mentation affects privacy-utility tradeoffs in medical image classification. Using
PneumoniaMNIST [15] for pneumonia detection, we evaluate rotation-based aug-
mentation interactions with differential privacy across multiple privacy budgets.
Our analysis reveals non-linear privacy-performance relationships, identifies opti-
mal configurations balancing privacy and utility, and provides practical guidance
for privacy-preserving medical AI implementation.

Our contributions include: (1) Empirical analysis of augmentation-privacy
interactions in medical imaging, revealing how rotation affects differentially pri-
vate training; (2) identification of practical privacy budget ranges maintaining
clinically acceptable performance with meaningful privacy protection; and (3)
evidence-based recommendations for combining augmentation and differential
privacy in healthcare AI. These findings impact regulatory frameworks, institu-
tional policies, and practical deployment of privacy-preserving medical AI sys-
tems.

The remainder of this paper is organized as follows. Section 2 provides es-
sential background on differential privacy in healthcare deep learning and data
augmentation in medical image analysis, establishing the theoretical foundation
for our investigation. Section 3 presents our experimental methodology, includ-
ing dataset description, model architecture, privacy implementation, and aug-
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mentation strategy. Section 4 analyzes our comprehensive experimental results,
examining privacy-utility tradeoffs across different configurations and revealing
key interaction effects between augmentation and differential privacy. Section
5 discusses the implications of our findings for healthcare AI practitioners and
policymakers, addresses study limitations, and outlines directions for future re-
search. Finally, Section 6 concludes with a synthesis of our contributions and
their significance for privacy-preserving medical AI development.

2 Background

2.1 Differential Privacy in Healthcare Deep Learning

Differential privacy has emerged as the gold standard for privacy-preserving ma-
chine learning in healthcare, offering mathematically rigorous guarantees against
privacy breaches [6] [16]. It ensures that the presence or absence of any individ-
ual’s data does not significantly affect analysis outcomes, providing formal pro-
tection against membership inference attacks particularly concerning in medical
contexts.

Formally, a randomized algorithm M satisfies (ϵ, δ)-differential privacy if for
all neighboring datasets D and D′ (differing by at most one record) and for all
possible outputs S ⊆ Range(M):

Pr[M(D) ∈ S] ≤ eϵ · Pr[M(D′) ∈ S] + δ (1)

where ϵ represents the privacy budget (lower values indicate stronger privacy)
and δ accounts for privacy failure probability, typically 10−5.

The application of differential privacy to deep learning through differentially
private stochastic gradient descent (DP-SGD) [7] has shown promise in medical
applications [17]. However, healthcare applications present unique challenges:
medical datasets are smaller and more heterogeneous than typical benchmarks,
making models more susceptible to privacy noise injection. Additionally, reduced
accuracy in medical AI can directly impact patient outcomes, creating critical
tension between privacy protection and clinical utility.

2.2 Data Augmentation in Medical Image Analysis

Medical datasets frequently suffer from severe class imbalance, with underrep-
resented pathological conditions leading to biased models that perform poorly
on minority classes. This reflects a critical concern where misdiagnosis of rare
diseases can have severe clinical consequences[18].

Unlike natural image datasets, medical image augmentation requires domain-
specific adaptations to preserve clinical validity and avoid unrealistic artifacts
that could compromise diagnostic accuracy. Traditional computer vision tech-
niques must be carefully calibrated for medical applications—excessive rotation
in chest X-rays could simulate impossible patient positioning, while inappropri-
ate intensity transformations might obscure critical pathological indicators.
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Augmentation serves multiple purposes in medical contexts: expanding lim-
ited datasets, balancing underrepresented classes through targeted augmentation
of minority samples, and simulating natural variations in patient positioning,
imaging equipment differences, and acquisition protocols. This targeted aug-
mentation of rare pathological cases is particularly valuable for improving model
fairness and diagnostic performance across diverse patient populations.

2.3 Privacy-Utility Tradeoffs in Medical AI

The tension between privacy protection and model utility is particularly critical
in medical AI, where both privacy breaches and reduced accuracy can have
severe consequences. Traditional privacy approaches like de-identification are
insufficient against sophisticated machine learning attacks, making differential
privacy essential despite its performance costs.

Recent studies reveal non-linear relationships between privacy budgets and
medical AI performance, with performance cliffs at certain epsilon thresholds
below which utility becomes clinically unacceptable [19]. This challenge is exac-
erbated for underrepresented classes, as privacy noise disproportionately affects
learning from limited samples, potentially worsening existing disparities in diag-
nostic accuracy across different patient populations and pathological conditions.

Risk-based frameworks for privacy budget allocation now consider not only
data sensitivity and clinical criticality but also class distribution and fairness im-
plications. The integration of augmentation with differential privacy represents
a promising approach for improving privacy-utility tradeoffs while addressing
class imbalance, potentially maintaining clinical utility for both common and
rare conditions under strict privacy constraints.

3 Methodology

3.1 Dataset

We utilized the PneumoniaMNIST dataset [15] from the MedMNIST collection
[15], a standardized benchmark for medical image classification. The dataset
consists of chest X-ray images preprocessed to 28×28 grayscale format, con-
taining pediatric pneumonia cases with binary classification labels (normal vs.
pneumonia-positive). The dataset provides a clinically relevant yet computation-
ally efficient testbed for evaluating privacy-preserving machine learning tech-
niques in medical imaging applications.

3.2 Model Architecture

Our experiments employed a modified ResNet-18 [20] architecture adapted for
medical image classification. Key modifications included: (1) first convolutional
layer adapted for single-channel grayscale input (Conv2d(1, 64, kernel_size=7,
stride=2, padding=3)), (2) final fully connected layer modified for binary classi-
fication (Linear(512, 2)), and (3) selective layer freezing where the first 6 layers
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remained frozen to preserve pre-trained ImageNet features while later layers were
fine-tuned for pneumonia detection.

Table 1: Modified ResNet-18 Architecture Summary
Component Layers Output Size Status
Input Block conv1, bn1, relu, maxpool 64×7×7 Frozen
Residual Blocks layer1, layer2 128×4×4 Frozen

layer3, layer4 512×1×1 Trainable
Classification avgpool, fc 2 classes Trainable
Total Parameters 11.69M (50.5% trainable)

3.3 Differential Privacy Implementation

Differential privacy was implemented using the Opacus framework [21] integrated
with PyTorch, providing formal (ϵ, δ)-differential privacy guarantees through dif-
ferentially private optimizer. We evaluated two privacy budget configurations:
ϵ ∈ {1.0, 8.0} with δ = 10−5, representing strict and moderate privacy con-
straints respectively. Gradient clipping was applied with a maximum L2 norm
of 1.2 to bound individual sample sensitivity. The privacy accountant tracked
cumulative privacy expenditure across training epochs, ensuring adherence to
the specified privacy budget throughout the learning process.

3.4 Training Configuration and Computational Setup

Table 2 summarizes the comprehensive experimental configuration used across
all privacy and augmentation conditions.

3.5 Data Augmentation Strategy

The pneumonia dataset exhibits significant class imbalance (72.8% pneumonia
vs. 27.2% normal cases), as shown in Figure 1. This imbalance poses challenges
for differential privacy implementation, as minority classes are more vulnera-
ble to privacy noise. We applied rotation-based augmentation (±20 degrees) to
address data scarcity and improve model robustness under privacy constraints,
as illustrated in Figure 2. This approach preserves medical image authenticity
while providing regularization that helps mitigate overfitting to the majority
class. Unlike synthetic oversampling, rotation augmentation maintains clinical
validity and avoids amplifying privacy risks through artificial data generation.
The augmentation parameters were optimized for chest X-ray characteristics to
preserve anatomical orientations while enhancing robustness to natural posi-
tioning variations—particularly important when privacy noise may compromise
minority class learning.
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Table 2: Experimental Configuration and Computational Setup
Parameter Value/Description
Training Hyperparameters
Optimizer Adam
Learning Rate 0.0005
Training Epochs 15
Batch Size 64
Loss Function Cross-entropy
Privacy Parameters
Gradient Clipping (DP) L2 norm = 1.2
Privacy Budgets (ϵ) 1.0, 8.0
Delta (δ) 10−5

Privacy Framework Opacus 1.1.0
Data Augmentation
Transformation Type Random rotation
Rotation Range ±20 degrees
Computational Environment
Platform Google Colab
GPU NVIDIA Tesla T4 (16GB)
Deep Learning Framework PyTorch 1.12.0
Programming Language Python 3.8

Fig. 1: Dataset class imbalance: real vs. balanced distribution.
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Fig. 2: Original and rotated PneumoniaMNIST samples (±20°). Labels: 0=nor-
mal, 1=pneumonia.

4 Results and Discussion

To systematically evaluate the interplay between differential privacy and data
augmentation in medical image classification, we conducted comprehensive ex-
periments across four distinct configurations: (1) Baseline with no privacy or aug-
mentation, (2) DP-only implementations with privacy budgets ϵ ∈ {1.00, 7.99},
(3) Augmentation-only using rotation transformations, and (4) Combined DP +
Augmentation with ϵ ∈ {0.71, 7.99}. Our experimental results, presented in Fig-
ures 3 through 5 and summarized in Table 3, reveal distinct convergence patterns
and performance characteristics that illuminate the fundamental privacy-utility
tradeoffs in medical AI. The introduction of differential privacy consistently de-
grades model performance, with severity directly related to privacy budget con-
straints—strict privacy (ϵ = 1.00) exhibits delayed learning dynamics with test
accuracy plateauing at 62% before gradually improving to 82.5%, while relaxed
privacy (ϵ = 7.99) shows more stable convergence but still achieves reduced accu-
racy (80.8%) compared to baseline (85.0%). Rotation-based data augmentation
demonstrates beneficial regularization effects, improving baseline performance to
86.2%, though with notable training volatility. Most critically, extremely strict
privacy constraints (ϵ = 0.71) result in catastrophic utility loss with accuracy
dropping to 62.5%, while the optimal configuration combining moderate pri-
vacy with augmentation (ϵ = 7.99) achieves 83.8% accuracy, representing the
best achievable balance between privacy protection and clinical utility in our
experimental framework.

4.1 Discussion and Implications

The training dynamics reveal fundamental differences in how privacy mecha-
nisms affect neural network optimization. In the baseline configuration (Fig-
ure 3a), we observe smooth, monotonic improvement in both training and test
accuracy, with convergence achieved by epoch 10. However, the introduction of
differential privacy fundamentally alters this behavior.
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(a) Baseline (No DP, No Augmentation)

(b) Augmentation-only (Rotation)

Fig. 3: Training dynamics for baseline and augmentation-only configurations.
Each subplot shows training/validation loss (left) and accuracy (right) over
epochs.

Table 3: Performance Summary Across Experimental Configurations
Configuration ϵ Test Accuracy (%) Micro AUC Macro AUC Epochs to Convergence
Baseline ∞ 85.0 ± 2.1 0.892 0.878 10
DP-only 1.00 82.5 ± 1.8 0.871 0.845 12
DP-only 7.99 80.8 ± 2.3 0.863 0.839 14
Augmentation-only ∞ 86.2 ± 3.1 0.898 0.883 13
DP + Augmentation 0.71 62.5 ± 0.9 0.721 0.698 7
DP + Augmentation 7.99 83.8 ± 2.0 0.887 0.864 14
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(a) DP-only (ϵ = 1.00)

(b) DP-only (ϵ = 7.99)

Fig. 4: Training dynamics for differential privacy-only configurations with differ-
ent privacy budgets.
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(a) DP + Augmentation (ϵ = 0.71)

(b) DP + Augmentation (ϵ = 7.99)

Fig. 5: Training dynamics for combined differential privacy and augmentation
configurations.
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For strict privacy settings (ϵ = 1.00, Figure 4a), the model exhibits a charac-
teristic "delayed learning" phenomenon where test accuracy remains plateaued
at approximately 62% for the first 6 epochs before suddenly improving. This
suggests that the privacy noise initially overwhelms the learning signal, requir-
ing the model to accumulate sufficient gradient information before meaningful
parameter updates can occur. The eventual improvement to 82.5% demonstrates
that the model can overcome initial noise interference given sufficient training
time.

The relaxed privacy setting (ϵ = 7.99, Figure 4b) shows a different pattern:
more gradual but consistent improvement, ultimately achieving 80.8% accuracy.
Interestingly, this configuration performs slightly worse than the stricter privacy
setting, which may indicate suboptimal hyperparameter tuning or the presence
of local minima in the privacy-modified loss landscape.

Data augmentation introduces its own complexity, as evidenced by the high
volatility in test accuracy (Figure 3b). The fluctuations between 81-89% suggest
that rotation-based transformations, while beneficial for generalization, may not
be optimally calibrated for this specific medical imaging task. This volatility
could potentially be addressed through more sophisticated augmentation strate-
gies or adaptive augmentation scheduling.

Our empirical results provide concrete evidence for the theoretical privacy-
utility tradeoff, but with important nuances for medical applications. The rela-
tionship between ϵ and utility is not linear, as demonstrated by the relatively
modest degradation from ϵ = ∞ to ϵ = 7.99 (4.2 percentage points) compared
to the catastrophic drop to ϵ = 0.71 (22.5 percentage points).

This non-linear relationship has profound implications for privacy budget
allocation in healthcare settings. The "privacy cliff" observed around ϵ < 1.0
suggests that there exists a practical lower bound for medical AI applications
where further privacy gains come at disproportionate utility costs. From a regu-
latory perspective, this finding supports the adoption of moderate privacy bud-
gets (ϵ ∈ [1.0, 10.0]) rather than pursuing theoretical privacy ideals that may
compromise patient safety through reduced diagnostic accuracy.

The combined DP + Augmentation approach reveals an interesting interac-
tion effect. While augmentation alone improves baseline performance by 1.2%, its
combination with moderate privacy (ϵ = 7.99) yields only 83.8% accuracy—still
below the augmentation-only baseline. This suggests that privacy noise and aug-
mentation transformations may interfere with each other, potentially through
competing regularization effects or overlapping noise patterns.

The translation of these findings to real-world medical AI deployment re-
quires careful consideration of clinical workflow constraints and regulatory re-
quirements. The observed 1.2% accuracy reduction in the optimal configuration
(DP + Augmentation, ϵ = 7.99) must be evaluated against the specific clinical
context.
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For screening applications where high sensitivity is paramount, even small
accuracy reductions could translate to missed diagnoses. However, for diagnos-
tic support tools where physicians retain final decision-making authority, this
degradation may be acceptable given the privacy benefits. The key insight is
that privacy-utility tradeoffs should be evaluated not just in terms of model
performance metrics, but in terms of clinical outcomes and patient welfare.

The training time implications are equally important for practical deploy-
ment. Our results show that privacy-preserving configurations require 12-14
epochs for convergence compared to 10 epochs for baseline, representing a 20-40%
increase in training time. In environments with limited computational resources
or urgent model deployment needs, this extended training requirement could
pose significant operational challenges.

These results have significant implications for healthcare data governance
and policy development. The identification of practical privacy budget ranges
(ϵ ∈ [1.0, 10.0]) provides concrete guidance for institutional review boards and
data protection officers tasked with balancing privacy protection with research
utility.

The finding that extremely strict privacy settings (ϵ < 1.0) may be counter-
productive suggests that privacy regulations should avoid arbitrary low epsilon
requirements without considering clinical utility. Instead, a risk-based approach
that weighs privacy protection against potential harm from reduced diagnostic
accuracy may be more appropriate.

Furthermore, our results support the development of tiered privacy frame-
works where different epsilon values are applied based on data sensitivity, clini-
cal application, and stakeholder risk tolerance. High-risk diagnostic applications
might justify higher epsilon values (weaker privacy but better utility), while
research applications with lower clinical impact could operate under stricter pri-
vacy constraints.

Several limitations warrant discussion when interpreting these results. First,
our evaluation focuses on a single medical imaging task and dataset, limiting
generalization across different medical domains. The observed patterns may not
hold for other imaging modalities (e.g., MRI, CT) or non-imaging medical data.

Second, our augmentation strategy is limited to rotation transformations.
Medical imaging offers numerous domain-specific augmentation opportunities
(intensity scaling, elastic deformations, synthetic lesion insertion) that could
potentially provide better utility preservation under privacy constraints. Future
work should explore these advanced augmentation techniques.

Third, our privacy analysis considers only (ϵ, δ)-differential privacy. Other
privacy frameworks (e.g., local differential privacy, federated learning with se-
cure aggregation) might yield different privacy-utility tradeoffs and deserve in-
vestigation in medical contexts.

The choice of noise mechanisms also represents a limitation. Although Gaus-
sian noise is standard for DP-SGD, recent advances in privacy-preserving op-
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timization (e.g., adaptive clipping, private adaptive optimization) could poten-
tially improve the observed utility-privacy trade-offs.

Our findings suggest several promising research directions for privacy-preserving
medical AI. First, the development of medical-specific augmentation strategies
that synergize with rather than compete against privacy mechanisms could im-
prove utility preservation. This might include leveraging medical domain knowl-
edge to design transformations that enhance privacy protection while maintain-
ing diagnostic relevance.

Second, the non-linear privacy-utility relationship observed in our experi-
ments motivates research into adaptive privacy budget allocation. Dynamic ep-
silon scheduling that adjusts privacy levels based on training progress and con-
vergence metrics could optimize the tradeoff throughout the learning process.

Third, the delayed learning phenomenon under strict privacy constraints sug-
gests opportunities for architectural innovations. Privacy-aware neural network
designs that account for gradient noise patterns could potentially achieve better
convergence properties under differential privacy constraints.

Finally, our results highlight the need for comprehensive evaluation frame-
works that go beyond accuracy metrics to assess clinical utility, fairness across
demographic groups, and real-world deployment feasibility. Such frameworks
would better support evidence-based decision-making in healthcare AI privacy
implementation.

5 Conclusion

This study provides a comprehensive analysis of data augmentation interactions
with differential privacy in medical image classification. Through systematic
pneumonia detection experiments using PneumoniaMNIST, we demonstrated
non-linear privacy-utility relationships significantly influenced by augmentation
strategies.

Key findings reveal that moderate privacy budgets (ϵ = 8.0) with rotation
augmentation achieve optimal balance, maintaining 83.8% accuracy with mean-
ingful privacy guarantees. We identified a critical "privacy cliff" below ϵ = 1.0
causing catastrophic utility loss (62.5% accuracy), establishing practical lower
bounds for medical AI applications. The observed delayed learning under strict
privacy constraints indicates privacy noise initially overwhelms learning signals,
requiring extended training for convergence.

While augmentation improved baseline performance by 1.2%, its combina-
tion with privacy mechanisms yielded mixed results, suggesting augmentation
strategies must complement rather than interfere with privacy noise patterns.
These findings provide immediate guidance for healthcare practitioners and poli-
cymakers, with identified practical privacy ranges (ϵ ∈ [1.0, 8.0]) offering concrete
guidance for institutional review boards balancing privacy with research utility.

From regulatory perspectives, this work emphasizes evidence-based privacy
guidelines accounting for clinical utility alongside privacy protection. Non-linear
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privacy-utility relationships suggest regulations should avoid arbitrary low ep-
silon requirements without considering healthcare outcome impacts. Future work
should explore advanced medical-specific augmentation methods and develop
adaptive privacy budget allocation strategies.

Our findings contribute to evidence supporting practical privacy-preserving
medical AI deployment while highlighting the importance of balancing patient
privacy with clinical effectiveness. This work provides empirical foundations for
developing healthcare AI systems that are both privacy-preserving and clinically
effective.
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