An Advanced Security Model for Virtualized Network
Functions in the Cloud

Abstract. Cloud computing and virtualization have revolutionized the IT indus-
try, providing scalability and flexibility. But the dynamic and dispersed charac-
ter of NFV-based cloud systems presents serious security issues including vul-
nerabilities in virtualized network functions (VNFs), inter-VNF communica-
tion, and hypervisor attacks. This paper focuses on the security implications of
network virtualization and proposes a novel security model based on artificial
intelligence and deep learning algorithms. The model combines a Deep Autoen-
coder (DAE) and machine learning techniques for network intrusion detection
in NFV environments. The results demonstrate the model’s effectiveness in de-
tecting network intrusions in virtual networks. Our model achieved a high de-
tection rate of 96%, demonstrating its effectiveness in detecting network intru-
sions within virtual networks.
Keywords: Network Function Virtualization, Cloud Computing, Network Intrusion Detec-
tion, Deep Autoencoder.

1 Introduction

Cloud computing has reshaped the internet architecture being one of the
most significant advancements in the field of information technology in recent years
[1]. This technology provides on-demand access to a variety of computing resources,
including servers, storage, applications, and services. Virtualization technology is one
of the key enablers of cloud computing [2]. Through virtualization, multiple operating
systems can operate on a single physical machine, maximizing resource efficiency



and reducing hardware expenses. Additionally, virtualization enables the creation of
virtual machines (VMs) that may be easily deployed, moved, or scaled up or down in
alignment with demand. The technology has been extended to networks, enabling
multiple virtual networks to be created on a single physical network [3]. This technol-
ogy has been the key idea behind what is called “Network Virtualization” which al-
lows the creation of several isolated virtual networks on top of a shared physical net-
work infrastructure [3]. Network Virtualization enables better network management,
security, and compliance by allowing organizations to construct logical network seg-
ments for various applications or user groups. This call for two paradigms that are
tandemly used: Network Functions Virtualization (NFV) and Software-Defined Net-
working (SDN) [4].

In order to deliver particular network operations, network operators use a variety of
hardware running proprietary software. As a result, they must purchase and set up
new hardware if they want to offer new network services [1]. This brings up several
challenges, including rising equipment costs; rising power consumption along every
new device; increased complexity that increases operational costs and misconfigura-
tion risk; low dynamism and scalability.

Therefore, NFV has come as a potential solution to these problems. Network Func-
tions Virtualization is a network architecture idea that the European Telecommunica-
tions Standards Institute (ETSI) standardized in October 2012 [4]. It entails using
standard hardware to host diverse, vendor-independent network software components.
NFV enables network functions (such as packet forwarding and dropping) to be car-
ried out in virtual machines (VMs) in a cloud architecture as opposed to in dedicated
devices. The Network Functions (NFs) are virtualized and consolidated onto standard
hardware instead of being provided by a large number of devices with vendor-specific
hardware and software. As a result, the requirement to purchase a single device for
each NF is circumvented, leading to significant cost savings for network operators.
The NFV paradigm takes advantage of the decoupling of software from hardware to
increase flexibility and agility, allowing Telecommunication Service Providers to
provide better service agility by opening up their network capabilities and network
controls to users as well as other functionalities like the ability to deploy or support
new network services more quickly and affordably.

According to the framework introduced by the (ETSI), NFV is built on three main
domains [1]: (1) Virtual Network Functions (VNFs); (2) NFV infrastructure, and (3)
NFV management and orchestration (MANO). VNFs are considered as containers of
network services provisioned by software. The physical resources (such as CPU,
memory, and I/O) needed for storage, processing, and networking in order to set up
the execution of VNFs are included in the infrastructure component of NFV. The
NFV management and orchestration domain manages all virtualization-specific tasks
within the NFV framework. The MANO domain represents a main component deal-



ing with heterogeneity in physical resources in order to ensure the desired level of
interoperability in case they are developed by different vendors.

SDN, when coupled with NFV, provides the network programmability and centra-
lized control needed to efficiently manage and orchestrate the virtualized network
functions. SDN’s decoupling of the control plane from the forwarding plane allows
for dynamic control and management of the network infrastructure, while NFV vir-
tualizes and manages the network functions themselves.

This mapped architecture has been a matter of interest due to its importance and the
challenges it presents. Hence, several academic researchers have conducted studies
and experiments related to NFV, which has found application in conjunction with
cloud computing, edge computing, fog computing, the Internet of Things (IoT) [5], as
well as 5G, for NFV is a fundamental technology of 5G networks [6], and potential
upcoming technologies like 6G. These research projects explore various aspects of
NFV such as service function placement, traffic load balancing, dynamic service
function chain [7][8], resource orchestration [9], security architecture [6], service
function routing [10], and recovery of device failure [11][12].

While NFV-based cloud environments have brought numerous benefits to organiza-
tions, they also come with a set of challenges [4]. One of the most significant chal-
lenges is security. The cloud environment presents a unique set of security risks and
threats that must be addressed to ensure the confidentiality, integrity, and availability
of data and applications. Virtual networks within the cloud are particularly vulnerable
to security threats as they are highly dynamic and often span multiple physical loca-
tions and cloud providers [13]. (NFV) is a dynamic and distributed technology where
resources are constantly changing, and the network perimeter is not well defined. This
presents new security challenges in such environments. Classic and regular security
solutions, such as firewalls, antivirus, and anti-malware systems, are often unable to
detect and respond to emerging threats in real-time, making them inadequate within
cloud environments and leaving them vulnerable to cyber-attacks [14]. Therefore,
securing virtual networks in the cloud requires a comprehensive approach that leve-
rages a range of novel and advanced security mechanisms, including application-
aware security and threat intelligence. Emerging technologies such as machine learn-
ing and artificial intelligence are being increasingly used in the field of security to
enhance threat detection and response capabilities [15]. These technologies have the
ability to analyze large amounts of data and identify patterns that may be indicative of
a security threat. Therefore, this research proposes a security model that incorporates
deep learning techniques to secure VNF-based cloud environments, in which we use a
deep autoencoder in order to achieve anomaly detection and then classify the anoma-
lies detected using a machine learning multi-class algorithm.

Our contributions in this paper are:
- Developed SDN-based NIDS architecture for real-time intrusion detection in
VNF-based clouds.



- Implemented hybrid security framework with deep learning and ML tech-
niques for precise attack recognition and reduced false positives.
- Enhanced cloud security and incident response capabilities with granular de-
tails on detected attacks.
- Employed deep autoencoders as part of the anomaly detection process.
The remainder of this paper is structured as follows: the second section presents the
related work about the security axis in the NFV-based clouds. We present, in section
3, NFV-NIDS, the proposed security model. Section 4 provides the results of our
experiments and we finish this paper, by a conclusion and perspectives.

2 Related Works

To solve the security issue in NFV and SDN environments in cloud-based systems,
several research studies have recently been carried out, as well as service function
chains by referring to the Security Service Function Chain (SSFC). Most of the re-
lated works focus on security orchestration. Different previous works address the
problem of security vulnerabilities in multi-tenant and multi-cloud NFV environ-
ments. According to the works, it is risky to trust cloud service providers, and end-to-
end services are put in peril if a single VNF at the network core is compromised.

In [16] [28], the authors categorize various NFV security threats, their causes, and
countermeasures, emphasizing the need for architectural redesign to mitigate vulnera-
bilities and enhance future NFV security. The proposed solutions aim to address these
vulnerabilities by implementing advanced security protocols and promoting a more
resilient architecture that can adapt to emerging threats in the evolving landscape of
industrial IoT networks. This proactive approach not only strengthens the overall
security posture of NFV systems but also ensures that organizations can confidently
leverage the benefits of virtualization while minimizing risks associated with cyber
threats. The authors, in [1] [27], address NFV security by proposing a lightweight
certificateless secure communication scheme that mitigates security threats like rep-
lay, man-in-the-middle, and impersonation attacks, while significantly reducing com-
putation and communication overheads in industrial IoT networks. By integrating this
certificateless scheme, organizations can achieve a seamless balance between robust
security measures and the operational efficiency required for the growing demands of
industrial IoT environments and in [18], an anomaly detection framework for SFC
integrity in NFV environments was proposed. It is based on the addition of a new
module called SIM in the NFV MANO architecture. The SIM communicates with the
Network Function Orchestrator (NFVO) using standard APIs to request information
on NFV elements and report anomaly detection results. SIM has been designed de-
tached from NFVO to make it independent. Network operators have direct access to
configure SIM. However, using the management interfaces that NFVO has previously
established, controlling and setting SIM through NFVO is the most appropriate me-
thod. [19] aims to outline a security architecture that addresses the attack vector in
existing orchestrators; however, it can be expanded to use the most recent advance-



ments in trusted computing, lightweight virtualization, and microservices. [20] pro-
poses a blockchain based system BSec-NFVO that secures orchestration operations in
virtualized networks ensuring the auditability of all operations that manipulate a ser-
vice function chain. In BSec-NFVO, the manipulation of a service chain is done
through signed transactions. Both tenants and orchestrators sign transactions, which
are then validated and agreed upon by consensus. This approach provides irrefutable
proof of the operations performed and makes the content of the transactions visible to
all participants in the network, including tenants, orchestrators, and consensus partici-
pants. The authors aim to enhance the security and audibility of NFVO through the
use of blockchain technology. Differently to aforementioned works focusing on
MANO related issues, [21] proposed an optimal placement of security VNF for Ser-
vice function chains based on the security level. This method formulates an optimiza-
tion problem to construct service function chains based on security level and uses a
genetic algorithm to find a near-optimal solution. The solution is used to place securi-
ty VNFs to meet the security requirements for each service function chain, leading to
the construction of multiple chains with high revenue and low cost while considering
security level. Similar works have utilized SFCs to provide security services, and in a
more recent model [22], multiple SFCs were combined into a security service func-
tion tree (SecSFT) to reduce the resource requirements for allocating virtual security
functions. The SecSFT uses the concept of decision tree for classification; to classify
the network attack traffic. Decision and detection rules are assigned to its nodes to
distinguish between suspicious and normal network flows and detect or prevent any
potential intrusions. The nodes of SecSFT carry out various security-focused virtual
functions, such as load balancing, traffic shaping, intrusion detection, firewall, and
virtualized network security hardware. An experimental cloud is utilized to construct
the SecSFT, and its security services are evaluated and validated through testing
against network attacks. [23] where the particularity optimization algorithm of net-
work topology feature extraction using graph neural network is addressed in this re-
search as a potential solution. This paper suggests a SSFC construction model using
graph neural network to access different VNFs in a specific order. It predicts QoS
indicators like delay and throughput based on network topology, routing policy, and
traffic matrix for efficient security. The algorithm uses the representation of nodes in
a graph neural network to construct a flexible and efficient security service function
chain more comprehensively under the influence of its surrounding neighbor nodes.
The model has been implemented on the control plane of the software-defined net-
work. The problem of constructing a security service function chain for the network
topology is transformed into a real-time prediction problem of link nodes based on
graph neural networks.

NFV enhances 6G security by enabling flexible and scalable security architectures.
It allows for the dynamic deployment of security functions, improving resilience and
adaptability against emerging threats in next-generation wireless networks, as dis-
cussed in [24]. This adaptability is crucial as the complexity of cyber threats contin-
ues to evolve, necessitating a robust framework that can effectively mitigate risks
while maintaining operational efficiency. As organizations transition to these ad-
vanced frameworks, they must also prioritize continuous monitoring and assessment



of their security measures to stay ahead of potential vulnerabilities. Implementing
proactive strategies such as threat intelligence sharing and automated response me-
chanisms will further strengthen their defenses, ensuring a comprehensive approach to
cybersecurity in the age of 6G.This holistic strategy not only enhances the overall
security posture but also fosters a culture of resilience, enabling organizations to
quickly adapt and respond to unforeseen challenges in an increasingly interconnected
digital landscape.

3 Proposed Model

(VNFs) are dynamic and distributed technologies that present new security obstruc-

tions in cloud environments. Classic and regular security solutions such as firewalls,
antivirus, and anti-malware systems are often unable to detect and respond to emerg-
ing threats in real-time, leaving VNF-based cloud environments vulnerable to cyber-
attacks. To address these hurdles, recent research has shown that machine learning
and deep learning techniques can be effective in identifying potential security risks in
real-time and automatically responding to them [25]. Therefore, this paper proposes a
security model that incorporates deep learning techniques to secure VNF-based cloud
environments in which we propose an SDN-based NIDS architecture. The architec-
ture can take advantage of the global network perspective offered by the SDN to iden-
tify and prevent intrusions in real-time by integrating the NIDS module in the control-
ler.
Our intended model will serve as a network intrusion detection system employing
anomaly-based detection technique. Subjecting the architecture to closer scrutiny,
network statistics gathered by the SDN controller are transmitted to the NFV-NIDS
security module for real-time intrusion detection analysis. We apply a hybrid security
framework that leverages deep learning and machine learning techniques for detecting
and classifying potential security risks in real-time. (See Figure 1).
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Figure 1: Proposed NFV Security Architecture

The proposed model consists of two phases: the first module (M1) uses a deep au-
toencoder (DAE) for anomaly detection to distinguish between normal and malicious
traffic based on a threshold, and the second module (M2) performs multi-label classi-
fication to predict the type of attacks. We name both models output, R1 and R2 re-
spectively (See Figure 2).

The detection process is threshold-based and relies on comparing the reconstruction
error between the input and output of the autoencoder. Once a network anomaly is
detected and identified, a multiclass classification is utilized to recognize the type of
attack. With the type of attack identified, the OpenFlow (OF) [26] protocol can effec-
tively mitigate it by modifying the flow table. Additionally, new security policies can
be distributed throughout the network to prevent attacks.
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Figure 2: A High-Level of the Proposed NFV-NIDS Architecture

In the first phase of the proposed security framework, a deep autoencoder is utilized
to perform anomaly detection on the network traffic. The autoencoder is trained on a
dataset of normal traffic flows to learn the patterns and characteristics of benign traf-
fic. During the testing phase, if the input traffic deviates significantly from the learned
patterns, the autoencoder will flag it as anomalous traffic and output a binary classifi-
cation result indicating whether the traffic is benign or malicious. The deep autoen-
coder consists of symmetric encoder-decoder architecture with multiple layers of fully
connected neurons. The input to the model is a vector of shape (input shape), which is
first compressed into a lower-dimensional representation by the encoder layers and
then reconstructed back to the original shape by the decoder layers. The architecture
of this model (M1) consists of three hidden layers on both the encoder and decoder,
having the structure (Depth, Size) equivalent to (3, 32) with a latent layer of size 3
(i.e., the bottleneck layer) each with a combination of batch normalization and activa-
tion functions, such as ReLU. The encoder part of the model consists of the first four




hidden layers, which progressively decrease the dimensionality of the input vector to
a three dimensional representation. The decoder part of the model then mirrors the
encoder layers, progressively increasing the dimensionality of the representation back
to the original shape. The number of neurons in each layer decreases towards the cen-
ter of the network and increases towards the output layer.

While in the second phase, a multi-label classification algorithm is employed to pre-
dict the type of attack. The input to this phase is the output of the first phase (i.e., the
anomalies extracted from the binary classification result). If the input is labeled as
malicious, the multi-label classification algorithm will predict the type of attack based
on the patterns of the malicious traffic. The envisioned security model is designed to
support multiple types of attacks and can accurately classify each attack based on its
characteristics. During the second phase of the model, the multi-label classification
algorithm analyzes the patterns of the malicious traffic and predicts the type of attack.
Each attack is classified into one or more categories, depending on the specific cha-
racteristics of the attack. This phase is promising to enhance the effectiveness of the
proposed security model in protecting VNFs by providing a more granular level of
detail about the nature of the attack and allows for more precise and targeted response
strategies.

In order to achieve the multi-class classification phase, three algorithms were experi-
mented with, namely Deep Autoencoder, Random Forest (RF), and XGBoost (XGB).
For the DAE of the second phase algorithm, we employed an architecture that closely
resembles the original (M 1), with minor modifications aimed at adapting it to a multi-
detection task. For the remaining algorithms; RF and XGB, we performed a hyperpa-
rameter tuning technique using Grid search [27] to find the best combination of para-
meters to maximize the model’s performance, avoid overfitting, and improve genera-
lization.

4 Experiments and Results

For the purpose of experimenting with our NFV-NIDS model, we utilize the NF-CSE-
CIC-IDS2018-v2 dataset [28]. It is generated from the original PCAP files of the
CSE-CIC-IDS2018 dataset [29]. It represents an updated version of the existing CSE-
CIC-IDS2018 that has been standardized into a NetFlow format. With a whopping
18,893,708 flows in, NF-CSE-CIC-IDS2018-v2 contains a wealth of insights into the
workings of computer networks. Of these flows, 2,258,141 (11.95%) are attack sam-
ples, and 16,635,567 (88.05%) are benign ones. To ensure the reliability and generali-
zability of our model, we have carefully evaluated various publicly available datasets
and have selected the NF-CSE-CIC-IDS2018-v2 for its high quality and significant
number of labeled samples. Furthermore, the dataset’s distribution of 11.95% attack
samples and 88.05% benign ones closely resembles real-world network traffic, mak-
ing it a suitable choice for training and testing our model. In addition, recent studies



have demonstrated that the model performance when using the NF-CSE-CIC-
IDS2018-v2 dataset is notably more efficient than other commonly used datasets such
as CSE-CICIDS2018 and NF-CSE-CIC-IDS 2018 [25].

In order to evaluate our proposed framework’s performance, we conduct an experi-
ment of the model settings. We use for the binary detector DAE seven hidden layers
each with a Batch Normalization layer. The number of neurons is “32-16-8-3-8-16-
32”. The activation function in the hidden layers is the RELU function. The batch size
for training the DAE is 128, the number of epochs is 10, and the learning rate is
0.001. MSE is used as a loss function and Adam is the optimizer. These hyperparame-
ters were meticulously selected based on a comprehensive process of experimentation
and analysis which determined that this particular configuration consistently yields
good results on the chosen dataset.

The model’s performance is evaluated using various metrics such as accuracy, recall,
precision, Fl-score, Matthew’s correlation coefficient (MCC), false negative rate
(FNR), false positive rate (FPR) and the ROC curve (ROC-AUC). Table 2 reveals
(M1) results.

Table 2: DAE Binary Detector Performance

Accuracy | Recall Precision [ Fl-score | MCC FNR FPR ROC-AUC

96% 99% 94% 96% 93% 0.4% 5% 96%

As we chose along this study to experiment with three different algorithms for the

multi-class classification phase, we obtained overall three different hybrid approach-

es, namely the first one DAE-DAE, the second DAE-RF, and the latter DAE-XGB.

We reveal the model’s performance results in Table 3.

Table 3: Multi-class Classifier Performance
Model Accuracy | Recall Precision | Fl-score | Cohen’s FNR FPR
kappa

DAE-DAE | 99.65% 99.65% 99.65% 99.65% 99.44% 0.0% 0.3%
DAE-RF 99.82% 99.82% 99.82% 99.82% 99.72% 0.0% 0.0%
DAE-XGB | 99.76% 99.76% 99.76% 99.76% 99.62% 0.0% 0.2%

The performance of the three hybrid models were analyzed and compared in this
study, with a focus on their ability to accurately classify attacks detected by the (M1)
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phase. The results indicate that all three models demonstrated high accuracy and
strong performance metrics. Among them, the RF hybrid approach stood out as the
top-performing model, achieving the highest accuracy. These findings highlight the
effectiveness of the RF algorithm in multi-class classification tasks for network secu-
rity applications. The other two hybrid models, DAE-DAE and DAE-XGB, also per-
formed well, but did not reach the level of accuracy and performance achieved by the
RF hybrid model.

In order to clearly emphasize the performance of the hybrid proposed approach and
the advantages it presents, we conduct a comparison of our entire model with its two
components and the standalone multi-class classifiers, the DAE, RF, and XGB. To
concretely demonstrate this, we build the aforementioned standalone classifiers to be
able to further compare them. The findings are shown in Table 4, 5, 6:

Table 4: DAE-DAE vs Standalone DAE

Model Accuracy | Recall Precision | Fl-score | Cohen’s FNR FPR
kappa

DAE (standa- | 97.77% 97.77% | 98.17% 96.84% 89.67% 0.0% 0.00005%

lone)

DAE-DAE 99.65% 99.65% | 99.65% 99.65% 99.44% 0.0% 0.3%

Table 5: DAE-RF vs Standalone RF

Model Accuracy | Recall Precision | Fl-score | Cohen’s FNR FPR
kappa

RF (standa- [ 97.77% 97.77% | 97.82% 97.02% 89.14% 4.3% 0.0%

lone)

DAE-RF 99.82% 99.82% | 99.82% 99.82% 99.72% 0.0% 0.0%

Table 6: DAE-XGB vs Standalone XGB
Model Accuracy | Recall Precision | Fl-score | Cohen’s FNR FPR

kappa
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XGB (standa- | 99.45% 99.45% 99.46% 99.42% 97.54% 0.0% 0.0%
lone)
DAE-XGB 99.76% 99.76% 99.76% 99.76% 99.62% 0.0% 0.2%

The tables’ findings show that the proposed hybrid technique clearly outperforms the
DAE, RF, and XGB standalone multi-class classifiers in terms of accuracy, recall,
precision, F1-score, Cohen’s Kappa, the false negative rate, and fallout. In their stan-
dalone versions, the DAE, RF, and XGB models all received high accuracy ratings,
with the XGB model receiving the greatest accuracy of 99.45%. The accuracy scores
were significantly raised when the standalone models were coupled with the DAE
model in the proposed hybrid framework, and the DAE-RF hybrid technique ended up
with a nearly ideal accuracy score of 99.82%.

The other evaluation metrics, in addition to accuracy, significantly increased when the
separate models were integrated in the hybrid approach. The hybrid strategy outper-
formed the standalone models in terms of the Cohen’s Kappa values, which assess
agreement between predicted and actual classifications. As a result, there appears to
be a higher level of agreement between the predicted and actual values, indicating that
the hybrid method is more robust and reliable. Furthermore, the lower false negative
rate and fallout observed in the proposed hybrid approach are particularly relevant in
the context of intrusion detection. In such scenarios, misclassifying a benign network
activity as a malicious intrusion can lead to false positives and unnecessary alarm
triggering, which can be costly and time-consuming for network administrators. On
the other hand, failing to detect a true intrusion can lead to a security breach and po-
tential damage to the system. The proposed hybrid approach’s ability to reduce the
false negative rate and fallout indicates that it can better differentiate between normal
network activities and malicious intrusions, leading to a more accurate and reliable
intrusion detection system. This has significant implications for enhancing the securi-
ty and resilience of computer networks against potential cyber-attacks. In the context
of intrusion detection, the use of a hybrid approach that incorporates multiple models
can be particularly advantageous. Network data is complex and dynamic, and it can
be challenging to capture all the relevant features and patterns using a single model.
The combination of multiple models, each trained to capture different aspects of the
data, can lead to a more comprehensive and accurate representation of the network
activity. This can result in a more effective intrusion detection system that is better
able to detect and classify anomalous behavior.
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5 Conclusion and Perspectives

Virtual networks within the cloud are particularly vulnerable to security threats. Tra-
ditional and conventional security measures are often inadequate. Through this study,
we have proposed a hybrid approach of binary and multi-class classification for the
Network Intrusion Detection System within NFV environments (NFV-NIDS) based
on artificial intelligence and deep learning algorithms that uses a Deep Autoencoder
to act as a first-step filter for network traffic classification. Future work can involve
implementing our proposed model on real platforms to evaluate its effectiveness in a
practical setting. Additionally, we suggest exploring the use of Graph Neural Net-
works (GNNs) to enhance the performance of the model.
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