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Abstract. Cloud computing and virtualization have revolutionized the IT indus-
try, providing scalability and flexibility. But the dynamic and dispersed charac-
ter of NFV-based cloud systems presents serious security issues including vul-
nerabilities in virtualized network functions (VNFs), inter-VNF communica-
tion, and hypervisor attacks. This paper focuses on the security implications of 
network virtualization and proposes a novel security model based on artificial 
intelligence and deep learning algorithms. The model combines a Deep Autoen-
coder (DAE) and machine learning techniques for network intrusion detection 
in NFV environments. The results demonstrate the model’s effectiveness in de-
tecting network intrusions in virtual networks. Our model achieved a high de-
tection rate of 96%, demonstrating its effectiveness in detecting network intru-
sions within virtual networks. 

Keywords: Network Function Virtualization, Cloud Computing, Network Intrusion Detec-

tion, Deep Autoencoder. 

 

1 Introduction 

Cloud computing has reshaped the internet architecture being one of the 

most significant advancements in the field of information technology in recent years 

[1]. This technology provides on-demand access to a variety of computing resources, 

including servers, storage, applications, and services. Virtualization technology is one 

of the key enablers of cloud computing [2]. Through virtualization, multiple operating 

systems can operate on a single physical machine, maximizing resource efficiency 
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and reducing hardware expenses. Additionally, virtualization enables the creation of 

virtual machines (VMs) that may be easily deployed, moved, or scaled up or down in 

alignment with demand. The technology has been extended to networks, enabling 

multiple virtual networks to be created on a single physical network [3]. This technol-

ogy has been the key idea behind what is called “Network Virtualization” which al-

lows the creation of several isolated virtual networks on top of a shared physical net-

work infrastructure [3]. Network Virtualization enables better network management, 

security, and compliance by allowing organizations to construct logical network seg-

ments for various applications or user groups. This call for two paradigms that are 

tandemly used: Network Functions Virtualization (NFV) and Software-Defined Net-

working (SDN) [4].  

In order to deliver particular network operations, network operators use a variety of 

hardware running proprietary software. As a result, they must purchase and set up 

new hardware if they want to offer new network services [1]. This brings up several 

challenges, including rising equipment costs; rising power consumption along every 

new device; increased complexity that increases operational costs and misconfigura-

tion risk; low dynamism and scalability.  

Therefore, NFV has come as a potential solution to these problems. Network Func-

tions Virtualization is a network architecture idea that the European Telecommunica-

tions Standards Institute (ETSI) standardized in October 2012 [4]. It entails using 

standard hardware to host diverse, vendor-independent network software components. 

NFV enables network functions (such as packet forwarding and dropping) to be car-

ried out in virtual machines (VMs) in a cloud architecture as opposed to in dedicated 

devices. The Network Functions (NFs) are virtualized and consolidated onto standard 

hardware instead of being provided by a large number of devices with vendor-specific 

hardware and software. As a result, the requirement to purchase a single device for 

each NF is circumvented, leading to significant cost savings for network operators. 

The NFV paradigm takes advantage of the decoupling of software from hardware to 

increase flexibility and agility, allowing Telecommunication Service Providers to 

provide better service agility by opening up their network capabilities and network 

controls to users as well as other functionalities like the ability to deploy or support 

new network services more quickly and affordably. 

According to the framework introduced by the (ETSI), NFV is built on three main 

domains [1]: (1) Virtual Network Functions (VNFs); (2) NFV infrastructure, and (3) 

NFV management and orchestration (MANO). VNFs are considered as containers of 

network services provisioned by software. The physical resources (such as CPU, 

memory, and I/O) needed for storage, processing, and networking in order to set up 

the execution of VNFs are included in the infrastructure component of NFV. The 

NFV management and orchestration domain manages all virtualization-specific tasks 

within the NFV framework. The MANO domain represents a main component deal-
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ing with heterogeneity in physical resources in order to ensure the desired level of 

interoperability in case they are developed by different vendors. 

SDN, when coupled with NFV, provides the network programmability and centra-

lized control needed to efficiently manage and orchestrate the virtualized network 

functions. SDN’s decoupling of the control plane from the forwarding plane allows 

for dynamic control and management of the network infrastructure, while NFV vir-

tualizes and manages the network functions themselves.   

This mapped architecture has been a matter of interest due to its importance and the 

challenges it presents. Hence, several academic researchers have conducted studies 

and experiments related to NFV, which has found application in conjunction with 

cloud computing, edge computing, fog computing, the Internet of Things (IoT) [5], as 

well as 5G, for NFV is a fundamental technology of 5G networks [6], and potential 

upcoming technologies like 6G. These research projects explore various aspects of 

NFV such as service function placement, traffic load balancing, dynamic service 

function chain [7][8], resource orchestration [9], security architecture [6], service 

function routing [10], and recovery of device failure [11][12].  

  While NFV-based cloud environments have brought numerous benefits to organiza-

tions, they also come with a set of challenges [4]. One of the most significant chal-

lenges is security. The cloud environment presents a unique set of security risks and 

threats that must be addressed to ensure the confidentiality, integrity, and availability 

of data and applications. Virtual networks within the cloud are particularly vulnerable 

to security threats as they are highly dynamic and often span multiple physical loca-

tions and cloud providers [13]. (NFV) is a dynamic and distributed technology where 

resources are constantly changing, and the network perimeter is not well defined. This 

presents new security challenges in such environments. Classic and regular security 

solutions, such as firewalls, antivirus, and anti-malware systems, are often unable to 

detect and respond to emerging threats in real-time, making them inadequate within 

cloud environments and leaving them vulnerable to cyber-attacks [14]. Therefore, 

securing virtual networks in the cloud requires a comprehensive approach that leve-

rages a range of novel and advanced security mechanisms, including application-

aware security and threat intelligence. Emerging technologies such as machine learn-

ing and artificial intelligence are being increasingly used in the field of security to 

enhance threat detection and response capabilities [15]. These technologies have the 

ability to analyze large amounts of data and identify patterns that may be indicative of 

a security threat. Therefore, this research proposes a security model that incorporates 

deep learning techniques to secure VNF-based cloud environments, in which we use a 

deep autoencoder in order to achieve anomaly detection and then classify the anoma-

lies detected using a machine learning multi-class algorithm.  

Our contributions in this paper are: 

- Developed SDN-based NIDS architecture for real-time intrusion detection in 

VNF-based clouds. 
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- Implemented hybrid security framework with deep learning and ML tech-

niques for precise attack recognition and reduced false positives. 

- Enhanced cloud security and incident response capabilities with granular de-

tails on detected attacks. 

- Employed deep autoencoders as part of the anomaly detection process.  

The remainder of this paper is structured as follows: the second section presents the 

related work about the security axis in the NFV-based clouds. We present, in section 

3, NFV-NIDS, the proposed security model. Section 4 provides the results of our 

experiments and we finish this paper, by a conclusion and perspectives. 

2 Related Works 

To solve the security issue in NFV and SDN environments in cloud-based systems, 

several research studies have recently been carried out, as well as service function 

chains by referring to the Security Service Function Chain (SSFC). Most of the re-

lated works focus on security orchestration. Different previous works address the 

problem of security vulnerabilities in multi-tenant and multi-cloud NFV environ-

ments. According to the works, it is risky to trust cloud service providers, and end-to-

end services are put in peril if a single VNF at the network core is compromised. 

In [16] [28], the authors categorize various NFV security threats, their causes, and 
countermeasures, emphasizing the need for architectural redesign to mitigate vulnera-
bilities and enhance future NFV security. The proposed solutions aim to address these 
vulnerabilities by implementing advanced security protocols and promoting a more 
resilient architecture that can adapt to emerging threats in the evolving landscape of 
industrial IoT networks. This proactive approach not only strengthens the overall 
security posture of NFV systems but also ensures that organizations can confidently 
leverage the benefits of virtualization while minimizing risks associated with cyber 
threats. The authors, in [1]  [27], address NFV security by proposing a lightweight 
certificateless secure communication scheme that mitigates security threats like rep-
lay, man-in-the-middle, and impersonation attacks, while significantly reducing com-
putation and communication overheads in industrial IoT networks. By integrating this 
certificateless scheme, organizations can achieve a seamless balance between robust 
security measures and the operational efficiency required for the growing demands of 
industrial IoT environments and in [18], an anomaly detection framework for SFC 
integrity in NFV environments was proposed. It is based on the addition of a new 
module called SIM in the NFV MANO architecture. The SIM communicates with the 
Network Function Orchestrator (NFVO) using standard APIs to request information 
on NFV elements and report anomaly detection results. SIM has been designed de-
tached from NFVO to make it independent. Network operators have direct access to 
configure SIM. However, using the management interfaces that NFVO has previously 
established, controlling and setting SIM through NFVO is the most appropriate me-
thod. [19] aims to outline a security architecture that addresses the attack vector in 
existing orchestrators; however, it can be expanded to use the most recent advance-
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ments in trusted computing, lightweight virtualization, and microservices. [20] pro-
poses a blockchain based system BSec-NFVO that secures orchestration operations in 
virtualized networks ensuring the auditability of all operations that manipulate a ser-
vice function chain. In BSec-NFVO, the manipulation of a service chain is done 
through signed transactions. Both tenants and orchestrators sign transactions, which 
are then validated and agreed upon by consensus. This approach provides irrefutable 
proof of the operations performed and makes the content of the transactions visible to 
all participants in the network, including tenants, orchestrators, and consensus partici-
pants. The authors aim to enhance the security and audibility of NFVO through the 
use of blockchain technology. Differently to aforementioned works focusing on 
MANO related issues, [21] proposed an optimal placement of security VNF for Ser-
vice function chains based on the security level. This method formulates an optimiza-
tion problem to construct service function chains based on security level and uses a 
genetic algorithm to find a near-optimal solution. The solution is used to place securi-
ty VNFs to meet the security requirements for each service function chain, leading to 
the construction of multiple chains with high revenue and low cost while considering 
security level. Similar works have utilized SFCs to provide security services, and in a 
more recent model [22], multiple SFCs were combined into a security service func-
tion tree (SecSFT) to reduce the resource requirements for allocating virtual security 
functions. The SecSFT uses the concept of decision tree for classification; to classify 
the network attack traffic. Decision and detection rules are assigned to its nodes to 
distinguish between suspicious and normal network flows and detect or prevent any 
potential intrusions. The nodes of SecSFT carry out various security-focused virtual 
functions, such as load balancing, traffic shaping, intrusion detection, firewall, and 
virtualized network security hardware. An experimental cloud is utilized to construct 
the SecSFT, and its security services are evaluated and validated through testing 
against network attacks. [23] where the particularity optimization algorithm of net-
work topology feature extraction using graph neural network is addressed in this re-
search as a potential solution. This paper suggests a SSFC construction model using 
graph neural network to access different VNFs in a specific order. It predicts QoS 
indicators like delay and throughput based on network topology, routing policy, and 
traffic matrix for efficient security. The algorithm uses the representation of nodes in 
a graph neural network to construct a flexible and efficient security service function 
chain more comprehensively under the influence of its surrounding neighbor nodes. 
The model has been implemented on the control plane of the software-defined net-
work. The problem of constructing a security service function chain for the network 
topology is transformed into a real-time prediction problem of link nodes based on 
graph neural networks. 

NFV enhances 6G security by enabling flexible and scalable security architectures. 
It allows for the dynamic deployment of security functions, improving resilience and 
adaptability against emerging threats in next-generation wireless networks, as dis-
cussed in [24]. This adaptability is crucial as the complexity of cyber threats contin-
ues to evolve, necessitating a robust framework that can effectively mitigate risks 
while maintaining operational efficiency. As organizations transition to these ad-
vanced frameworks, they must also prioritize continuous monitoring and assessment 
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of their security measures to stay ahead of potential vulnerabilities. Implementing 
proactive strategies such as threat intelligence sharing and automated response m
chanisms will further strengthen their defens
cybersecurity in the age of 6G.This holistic strategy not only enhances the overall 
security posture but also fosters a culture of resilience, enabling organizations to 
quickly adapt and respond to unforeseen challe
digital landscape. 
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hidden layers, which progressively decrease the dimensionality of the input vector to 

a three dimensional representation. The decoder part of the model then mirrors the 

encoder layers, progressively increasing the dimensionality of the representation back 

to the original shape. The number of neurons in each layer decreases towards the cen-

ter of the network and increases towards the output layer. 

While in the second phase, a multi-label classification algorithm is employed to pre-

dict the type of attack. The input to this phase is the output of the first phase (i.e., the 

anomalies extracted from the binary classification result). If the input is labeled as 

malicious, the multi-label classification algorithm will predict the type of attack based 

on the patterns of the malicious traffic. The envisioned security model is designed to 

support multiple types of attacks and can accurately classify each attack based on its 

characteristics. During the second phase of the model, the multi-label classification 

algorithm analyzes the patterns of the malicious traffic and predicts the type of attack. 

Each attack is classified into one or more categories, depending on the specific cha-

racteristics of the attack. This phase is promising to enhance the effectiveness of the 

proposed security model in protecting VNFs by providing a more granular level of 

detail about the nature of the attack and allows for more precise and targeted response 

strategies. 

In order to achieve the multi-class classification phase, three algorithms were experi-

mented with, namely Deep Autoencoder, Random Forest (RF), and XGBoost (XGB). 

For the DAE of the second phase algorithm, we employed an architecture that closely 

resembles the original (M1), with minor modifications aimed at adapting it to a multi-

detection task. For the remaining algorithms; RF and XGB, we performed a hyperpa-

rameter tuning technique using Grid search [27] to find the best combination of para-

meters to maximize the model’s performance, avoid overfitting, and improve genera-

lization. 

4 Experiments and Results 

For the purpose of experimenting with our NFV-NIDS model, we utilize the NF-CSE-

CIC-IDS2018-v2 dataset [28]. It is generated from the original PCAP files of the 

CSE-CIC-IDS2018 dataset [29]. It represents an updated version of the existing CSE-

CIC-IDS2018 that has been standardized into a NetFlow format. With a whopping 

18,893,708 flows in, NF-CSE-CIC-IDS2018-v2 contains a wealth of insights into the 

workings of computer networks. Of these flows, 2,258,141 (11.95%) are attack sam-

ples, and 16,635,567 (88.05%) are benign ones. To ensure the reliability and generali-

zability of our model, we have carefully evaluated various publicly available datasets 

and have selected the NF-CSE-CIC-IDS2018-v2 for its high quality and significant 

number of labeled samples. Furthermore, the dataset’s distribution of 11.95% attack 

samples and 88.05% benign ones closely resembles real-world network traffic, mak-

ing it a suitable choice for training and testing our model. In addition, recent studies 
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have demonstrated that the model performance when using the NF-CSE-CIC-

IDS2018-v2 dataset is notably more efficient than other commonly used datasets such 

as CSE-CICIDS2018 and NF-CSE-CIC-IDS 2018 [25]. 

In order to evaluate our proposed framework’s performance, we conduct an experi-

ment of the model settings. We use for the binary detector DAE seven hidden layers 

each with a Batch Normalization layer. The number of neurons is “32-16-8-3-8-16-

32”. The activation function in the hidden layers is the RELU function. The batch size 

for training the DAE is 128, the number of epochs is 10, and the learning rate is 

0.001. MSE is used as a loss function and Adam is the optimizer. These hyperparame-

ters were meticulously selected based on a comprehensive process of experimentation 

and analysis which determined that this particular configuration consistently yields 

good results on the chosen dataset. 

The model’s performance is evaluated using various metrics such as accuracy, recall, 

precision, F1-score, Matthew’s correlation coefficient (MCC), false negative rate 

(FNR), false positive rate (FPR) and the ROC curve (ROC-AUC). Table 2 reveals 

(M1) results. 

 

Table 2: DAE Binary Detector Performance 

 

Accuracy Recall Precision F1-score MCC FNR FPR ROC-AUC 

96% 99% 94% 96% 93% 0.4% 5% 96% 

 
As we chose along this study to experiment with three different algorithms for the 

multi-class classification phase, we obtained overall three different hybrid approach-

es, namely the first one DAE-DAE, the second DAE-RF, and the latter DAE-XGB. 

We reveal the model’s performance results in Table 3.  

 

Table 3: Multi-class Classifier Performance 

Model Accuracy Recall Precision F1-score Cohen’s 
kappa 

FNR FPR 

DAE-DAE  99.65%  99.65%  99.65% 99.65%  99.44%   0.0% 0.3% 

DAE-RF 99.82%  99.82%  99.82% 99.82% 99.72%  0.0%  0.0% 

DAE-XGB 99.76%  99.76%  99.76%  99.76%  99.62%  0.0%  0.2% 

 
The performance of the three hybrid models were analyzed and compared in this 

study, with a focus on their ability to accurately classify attacks detected by the (M1) 
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phase. The results indicate that all three models demonstrated high accuracy and 

strong performance metrics. Among them, the RF hybrid approach stood out as the 

top-performing model, achieving the highest accuracy. These findings highlight the 

effectiveness of the RF algorithm in multi-class classification tasks for network secu-

rity applications. The other two hybrid models, DAE-DAE and DAE-XGB, also per-

formed well, but did not reach the level of accuracy and performance achieved by the 

RF hybrid model.  

In order to clearly emphasize the performance of the hybrid proposed approach and 

the advantages it presents, we conduct a comparison of our entire model with its two 

components and the standalone multi-class classifiers, the DAE, RF, and XGB. To 

concretely demonstrate this, we build the aforementioned standalone classifiers to be 

able to further compare them. The findings are shown in Table 4, 5, 6: 

 

Table 4: DAE-DAE vs Standalone DAE 

 

Model Accuracy Recall Precision F1-score Cohen’s 
kappa 

FNR FPR 

DAE (standa-
lone)  

97.77%  97.77%  98.17%   96.84%  89.67% 0.0%  0.00005% 
 

DAE-DAE  99.65%  99.65%  99.65% 99.65%  99.44%   0.0% 0.3% 

 

Table 5: DAE-RF vs Standalone RF 

 

Model Accuracy Recall Precision F1-score Cohen’s 
kappa 

FNR FPR 

RF (standa-
lone)  

97.77%  97.77%  97.82%   97.02%  89.14%  4.3%  0.0% 
 

DAE-RF  99.82%  99.82%  99.82%  99.82%  99.72% 0.0% 0.0% 

 

Table 6: DAE-XGB vs Standalone XGB 

 

Model Accuracy Recall Precision F1-score Cohen’s 
kappa 

FNR FPR 
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XGB (standa-
lone)  

99.45%  99.45%   99.46%   99.42%   97.54% 0.0% 0.0% 
 

DAE-XGB 99.76%  99.76%  99.76%  99.76%  99.62% 0.0% 0.2%  

 
The tables’ findings show that the proposed hybrid technique clearly outperforms the 

DAE, RF, and XGB standalone multi-class classifiers in terms of accuracy, recall, 

precision, F1-score, Cohen’s Kappa, the false negative rate, and fallout. In their stan-

dalone versions, the DAE, RF, and XGB models all received high accuracy ratings, 

with the XGB model receiving the greatest accuracy of 99.45%. The accuracy scores 

were significantly raised when the standalone models were coupled with the DAE 

model in the proposed hybrid framework, and the DAE-RF hybrid technique ended up 

with a nearly ideal accuracy score of 99.82%. 

The other evaluation metrics, in addition to accuracy, significantly increased when the 

separate models were integrated in the hybrid approach. The hybrid strategy outper-

formed the standalone models in terms of the Cohen’s Kappa values, which assess 

agreement between predicted and actual classifications. As a result, there appears to 

be a higher level of agreement between the predicted and actual values, indicating that 

the hybrid method is more robust and reliable. Furthermore, the lower false negative 

rate and fallout observed in the proposed hybrid approach are particularly relevant in 

the context of intrusion detection. In such scenarios, misclassifying a benign network 

activity as a malicious intrusion can lead to false positives and unnecessary alarm 

triggering, which can be costly and time-consuming for network administrators. On 

the other hand, failing to detect a true intrusion can lead to a security breach and po-

tential damage to the system. The proposed hybrid approach’s ability to reduce the 

false negative rate and fallout indicates that it can better differentiate between normal 

network activities and malicious intrusions, leading to a more accurate and reliable 

intrusion detection system. This has significant implications for enhancing the securi-

ty and resilience of computer networks against potential cyber-attacks. In the context 

of intrusion detection, the use of a hybrid approach that incorporates multiple models 

can be particularly advantageous. Network data is complex and dynamic, and it can 

be challenging to capture all the relevant features and patterns using a single model. 

The combination of multiple models, each trained to capture different aspects of the 

data, can lead to a more comprehensive and accurate representation of the network 

activity. This can result in a more effective intrusion detection system that is better 

able to detect and classify anomalous behavior. 
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5 Conclusion and Perspectives 

Virtual networks within the cloud are particularly vulnerable to security threats. Tra-

ditional and conventional security measures are often inadequate. Through this study, 

we have proposed a hybrid approach of binary and multi-class classification for the 

Network Intrusion Detection System within NFV environments (NFV-NIDS) based 

on artificial intelligence and deep learning algorithms that uses a Deep Autoencoder 

to act as a first-step filter for network traffic classification. Future work can involve 

implementing our proposed model on real platforms to evaluate its effectiveness in a 

practical setting. Additionally, we suggest exploring the use of Graph Neural Net-

works (GNNs) to enhance the performance of the model. 
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