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Abstract. Multiple sclerosis lesion detection in brain MRI remains a
challenging task due to lesion heterogeneity, class imbalance, and vari-
ability in imaging protocols to detect the progression of this lesion. In
this work, a new study using knowledge distillation is presented, employ-
ing Vision Transformers for multiple sclerosis lesion detection in brain
MRI, focusing on transferring knowledge from a powerful Pyramid Vision
Transformer teacher model to a lightweight MobileViT student model.
Experimental results show that Pyramid Vision Transformer, as the most
performant teacher, significantly, increasing the accuracy of student mod-
els from 91.25% to 94.64% and F1-score from 89.4% to 93.19%, achieving
a 4% gain on a limited dataset. This study shows that using a powerful
model like PVT as a teacher in a knowledge distillation framework can
effectively improve the performance of smaller models such as Mobile-
ViT, even when training data is limited or imbalanced. By transferring
rich feature representations, the approach enables lightweight models to
achieve high accuracy and generalization, making them suitable for de-
ployment in resource-constrained healthcare settings.

Keywords: Multiple sclerosis lesion, Brain MRI images, Vision Trans-
former, Knowledge distillation, deep learning, medical diagnosis.

1 Introduction

Multiple Sclerosis (MS) is a chronic, inflammatory, and demyelinating disease
of the central nervous system, characterized by the formation of lesions in the
brain and spinal cord. Early and accurate diagnosis of MS is crucial for effective
clinical management and timely treatment, which can significantly slow disease
progression and improve patient outcomes. Magnetic Resonance Imaging (MRI)
plays a pivotal role in the diagnosis and monitoring of MS, as it provides high-
resolution, non-invasive visualization of brain tissue and lesion patterns.

Despite the growing interest in leveraging deep learning for automated mul-
tiple sclerosis (MS) lesion detection in MRI, several key challenges continue to
affect advancement in this field. A high challenge lies in the heterogeneity of
MS lesions, which vary widely in size, shape, intensity, and anatomical location
⋆ Funded by the Algerian DGRSDT as part of the PRFU project
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across patients and disease stages. These lesions typically affect small, scattered
areas of the brain, often dispersed across different regions, making data collec-
tion more challenging and resulting in severe class imbalance within the datasets.
This imbalance complicates the training process and negatively impacts model
generalization. Furthermore, significant variability in MRI acquisition protocols
from different scanner types and imaging sequences introduces inconsistencies
that limit the generalizability and stability of models across different datasets.

A key issue in this area is the longitudinal nature of MS, where tracking lesion
evolution over time is clinically essential. However, the availability of robust
longitudinal datasets continues to be limited. Finally, the high computational
demands of training and deploying advanced deep learning models pose a barrier
for many institutions, particularly in under-resourced environments, restricting
the scalability and adoption of such methods in routine clinical workflows.

In this context, knowledge distillation emerges as a powerful technique for
transferring the representational learning capabilities of large, high-performing
models (teachers) to smaller, more efficient models (students). This approach
is particularly valuable in medical imaging tasks such as MRI lesion detection,
where deploying resource-intensive models is often impractical. By leveraging the
distilled knowledge from teacher models, student models can achieve competi-
tive performance with significantly reduced computational costs and memory
requirements. Despite its potential, there remains a scarcity of research explor-
ing knowledge distillation for lesion detection in MRI, especially in the context
of complex neurological conditions like multiple sclerosis.

2 Related work

MS lesions differ significantly in size, shape, location, and intensity, often ap-
pearing hyperintense on FLAIR and hypointense on T1-weighted images. Their
similarity to non-pathological features and variability across stages complicate
accurate detection. Inconsistent visibility and anatomical diversity further chal-
lenge multimodal analysis and feature fusion, requiring advanced methods to
handle structural complexity and lesion heterogeneity effectively [1]. Addition-
ally, the inherent class imbalance, particularly between common lesions and rare
yet clinically significant subtypes like paramagnetic rim lesions (Rim+) linked
to chronic active inflammation in MS, which is important for diagnosis, further
hinders reliable model training [2]. These factors collectively make MS lesion
detection a complex task requiring sophisticated models capable of capturing
fine-grained, multimodal features and accounting for lesion heterogeneity.

Recent paper [3] demonstrate that artificial intelligence, using ML and DL,
enhances MS diagnosis and prognosis by enabling accurate lesion detection, sub-
type classification, and differentiation from other conditions. Models predict CIS-
to-MS conversion with 67.6–92.9% accuracy and forecast disability progression
by integrating clinical and imaging data, where lesion burden predicts short-term
and gray matter damage long-term outcomes. Another paper [4] proposes a two-
step method for Multiple Sclerosis lesion segmentation in MRI, combining a
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modified expectation-maximization algorithm for brain tissue classification with
a FLAIR-based thresholding and refinement process to detect lesions. Where
[5] proposes a multiscale, segmentation-based approach for MS lesion detection
in 3D multichannel MRI. Using hierarchical segmentation and a decision for-
est classifier trained on expert labels, it captures regional features effectively.
The method achieved 0.74 sensitivity, 0.96 specificity, and 0.96 accuracy, show-
ing strong alignment with expert annotations. A recent study [6] introduces
a highly accurate and efficient framework combining SWIN Transformer and
MobileNetV3-small for feature extraction with CatBoost, XGBoost, and Ran-
dom Forest for classification. Achieving 99.8% average accuracy and 0.07 loss
on the Kaggle MS dataset, the method shows strong potential for early, inter-
pretable, and clinically effective MS detection.

Several recent methods have improved MS lesion segmentation using 3D
CNNs. QSMRim-Net [2] combines deep residual 3D CNNs with radiomic fea-
tures and DeepSMOTE to handle class imbalance, achieving 0.976 accuracy and
0.70 F1 score. A 3D U-Net in [7], trained with manual annotations and augmen-
tation, reached 85% accuracy, while an ensemble of 3D U-Nets in [8] achieved a
0.70± 0.12 F1 score, enhancing robustness and generalization.

While many studies enhance MS lesion segmentation through architecture,
augmentation, or loss design, they often depend on large, resource-heavy models.
In contrast, knowledge distillation has emerged as a promising technique in the
field of medical imaging, allowing smaller models to leverage the capabilities of
larger models while maintaining efficiency.

Knowledge distillation (KD) has emerged as a powerful technique to enhance
brain MRI diagnosis by transferring knowledge from complex teacher models to
lightweight student models, maintaining high accuracy while reducing computa-
tional cost. A study [9] using 357 MRI scans achieved 98.10% accuracy with a
multi-teacher KD strategy. FM-LiteLearn [10] improved tumor feature represen-
tation using image integration, with T-ResNet18 showing a 9.4% classification
accuracy boost. CASD [11] applied self-distillation to refine feature extraction
in multi-modal glioma grading. Studies addressing limited 3D brain imaging
data [12–14] also report success. For example, [12] used CNN-LSTM to reach
85.96% accuracy and a 3.83% improvement in Alzheimer’s detection. KD-FMV
[14] improved transparency, with brain tumor classification accuracy of 98.77%
(student: 97.48%) and Alzheimer’s classification reaching 99.46%. CReg-KD [13]
boosted performance across models like ResNet and DenseNet (∼93–94% ac-
curacy). In privacy-sensitive contexts, Fed-Brain-Distill [15] and Fed-SPD [16]
combine KD with federated learning, achieving up to 94.38% accuracy with re-
duced training time and model size. Additional work [17, 18] uses multi-teacher
strategies and attention mechanisms, achieving 95.85% accuracy on ACDC. KD
with Vision Transformers [19–21] further improves efficiency and performance,
including QViT_28 achieving AUC 0.812 and accuracy 0.693, closely matching
ViT_28 while preserving quantum advantages.

In Alzheimer’s disease detection, the Res-Transformer and ResU-Net combi-
nation [22] enhanced skip connections and stability, achieving 96.9% accuracy
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via KD. RTAB [23] distilled temporal features from dual-stream ViTs, guiding
models with subtle longitudinal cues, achieving 0.899 accuracy and 0.917 recall
on MIRIAD. Additionally, [24] demonstrated ViTs’ feasibility under low-data
constraints, reaching 79.7% accuracy on ADNI1 and 82.0% on ADNI2, outper-
forming models trained without distillation.

Despite its growing success in tasks such as tumor segmentation and Alzheimer’s
disease classification, to the best of our knowledge, no prior work has investi-
gated the use of knowledge distillation for MS lesion detection in brain MRI.
This highlights a critical gap in the literature and motivates our study, which
is the first to explore this approach for enhancing performance and efficiency in
MS diagnosis.

3 Proposed approach

This section describes the proposed approach employed in our study as depicted
in Fig 1, comprising three main steps: (1) transfer learning using large pre-
trained models, (2) transfer learning using small models, and (3) knowledge
distillation to transfer knowledge from the large model to the smaller one. Our
objective was to evaluate various large models to identify the most effective one
for serving as the teacher model based on its performance metrics rather than its
size or architectural complexity. This ensures that the distilled knowledge comes
from the model with the strongest generalization capability, regardless of how
resource-intensive it may be.

Fig. 1. The proposed distillation approach: Student Learning from Hard Labels and
Teacher’s Soft Predictions (Eq. 3, and 4)
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3.1 Step1 : TL of Teacher Model (Large model)

In this study, transfer learning is used to fine-tune the Pyramid Vision Trans-
former (PVTV2B1) model for the diagnosis of brain MRI lesion. PVT is a hierar-
chical transformer architecture tailored for vision tasks, which efficiently balances
local and global feature extraction by progressively reducing spatial resolution
through its layers. This design allows it to capture rich contextual information
while maintaining a moderate number of parameters (approximately 14 million
in the V2B1 variant). PVTv2 is an improved extension of the original PVTv1,
addressing some of its limitations by introducing overlapping patch embeddings
(instead of non-overlapping ones) and convolutional feed-forward networks in
place of the standard MLP blocks. These enhancements lead to better feature
continuity, improved spatial understanding, and overall stronger performance in
downstream tasks.

To adapt PVT to our target brain MRI dataset,the deeper layers of each
model are fine-tuned, representing approximately 1

4 of the total layers. The shal-
low layers learn local visual features and the deeper layers capture semantic infor-
mation suitable for classification. This approach enabled us to leverage learned
representations from large-scale natural image data while focusing training on
high-level features relevant to lesion detection.

3.2 Step 2 : TL of Student Model (Small model)

The second stage involves applying transfer learning to a smaller, lightweight vi-
sion transformer model optimized for resource-constrained environments. In this
study, we selected MobileViT v2-50 due to its compact architecture and proven
efficiency in visual recognition tasks. Specifically, we used a reduced variant of
MobileViT v2-50 with approximately 10.2% fewer parameters, making it even
more suitable for efficient deployment. we choosed in this step an improved Mo-
bileViT v2, which is an enhanced version of the original MobileViT v1, which
initially combined convolutional layers with lightweight transformer blocks. The
v2 version introduces several improvements, including separable convolutions,
inverted residual blocks, and more efficient attention mechanisms, resulting in
better accuracy–efficiency trade-offs and improved performance on mobile and
edge devices.

While its lightweight architecture offers a high advantage of inference speed
and memory usage, its limited capacity can underperform when trained directly
on the target dataset.

3.3 Step 03: Knowledge distillation from large to small model

To bridge performance gaps between large and small models, knowledge distilla-
tion trains a smaller student model using both ground truth labels and softened
teacher logits. This combined loss approach enables the student to imitate the
teacher’s patterns efficiently. Its success depends on logit softening and effective
student training.
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Fig. 2. Architectural vision transformers: Teacher: PVT(left) and student :Mobile-
ViT(right)

Logits Extraction and Softening Instead of directly using the final output
probabilities of the teacher, we extract logits from the last dense layer before
activation. These logits are softened using a temperature parameter T to control
the smoothness of the output distribution produced by the teacher. Let us denote
the following:

– zt: Logits (raw output vector) from the teacher model
– zs: Logits from the student model
– T : Temperature parameter
– C: Number of classes
– pt: Softened probability distribution from the teacher
– ps: Softened probability distribution from the student

Logits Extraction: Logits z are the outputs of the neural network before any
activation function (like softmax or sigmoid). For a classification model, the
logits are usually taken from the final linear layer.

Softening with Temperature T: To extract soft labels, we apply the sigmoid
function to the logits with temperature

pt = Softmax
(zt
T

)
=

exp (zt/T )∑C
j=1 exp

(
z
(j)
t /T

) (1)

ps = Softmax
(zs
T

)
=

exp (zs/T )∑C
j=1 exp

(
z
(j)
s /T

) (2)

where pt and ps are the softened probability distributions of the teacher and
the student, respectively.

To analyze the effect of distillation between student and teacher, we experi-
mented with different configurations of the temperature with increasing param-
eter T: T=3, T= 10, and T= 100 which evaluate the similarities between classes
that are masked by the hard labels. Higher temperatures produce softer prob-
ability distributions, helping the student model to learn more representations
from the teacher predictions that are hidden by hard labels.
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Training Strategy: The student model is optimized by minimizing a weighted
combination of hard loss and distillation loss, controlled by a factor α. The
distillation loss is computed using the Kullback–Leibler (KL) divergence between
the softened outputs of the teacher and student:

Ldistill = T 2 ·KL(pt ∥ps) = T 2
∑
i

p
(i)
t log

(
p
(i)
t

p
(i)
s

)
(3)

We experimented with different values of the temperature T and the weight-
ing coefficient α, which balances the hard loss and distillation loss. Adjusting α
allowed us to control how much the student model relies on the teacher’s knowl-
edge versus the original ground truth in the distillation loss (from the teacher’s
soft outputs) and the standard hard loss (from ground truth labels). By tuning α
with different configurations, we aimed to explore how much the student should
rely on the teacher’s knowledge versus the original labels, and how closely the
student model’s learned distribution could align with that of the teacher. The
student is trained by minimizing a weighted sum of both loss components:

LTotal = α · LDistill + (1− α) · LHard (4)

Gradients from this combined loss are used to update the student’s parame-
ters,improving it to match the teacher’s performance while maintaining compu-
tational efficiency.

3.4 Dataset used

The dataset used in this study was originally hosted on Kaggle and is now
available upon request or with authorized access [25]. It consists of grayscale
brain MRI images curated for the task of multiple sclerosis (MS) detection and
classification (see Fig. 3). All images are preprocessed and resized to a standard

Fig. 3. Samples images from each class with labels and image size.

input shape of 224×224×1, representing single-channel grayscale slices, suitable
for convolutional and transformer-based deep learning models.

The dataset (accessed on 19 feb 2024).contains 3427 MRI images across four
classes: Healthy Axial, Healthy Sagittal, MS Sagittal, and MS Axial. It was split
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once into training, validation and test, and this same split is used consistently
across all experiments to ensure consistent comparison of the obtained results.
The dataset exhibits a class imbalance with more healthy samples (see figure 3).

Table 1. Dataset Split: Training, Validation, and Test Sets for Healthy and
MS Classes

Class Train Validation Test Total
Healthy 1289 323 404 2016
MS 903 226 282 1411
Total 2192 549 686 3427

4 Experimental results

In our experiments, we designed a binary classification task to distinguish be-
tween healthy individuals and patients with multiple sclerosis (MS) using brain
MRI images. The original dataset labels were recoded such that images from
healthy controls (both axial and sagittal). To ensure balanced class distribution,
stratified split is applied on the training data into training and validation sets,
using 80% for training and 20% for validation as illustrated in Table 1.

A knowledge distillation framework is implemented using hybrid vision trans-
former (ViT) models pretrained on ImageNet. Only the final transformer stack
was fine-tuned, while earlier layers were frozen to retain pretrained features. Ad-
ditional dense layers, dropout, and batch normalization were added for improved
performance. Models were trained using the Adam optimizer (lr = 1e−3), binary
cross-entropy loss, and evaluated using accuracy, precision, recall, and F1-score.
Mixed-precision training with XLA compilation accelerated training.

4.1 Results on step 01: Transfer learning on large models

In this experiment, the PVT-V2B1 (14M) model is evaluated as large teacher
model to assess its effectiveness on the MS lesion classification task. The results
obtained from this evaluation are summarized in Table 2.

Table 2. Transfer learning performance of PVT_V2B1 on the MS dataset

Model Params Test/Val Accuracy (%) Precision (%) Recall (%) F1-score (%)
PVTV2B1 14M Val 96.54 96.83 94.69 95.75

Test 96.50 96.40 96.04 95.71

Based on the obtained results in the table bellow (see Table 2) , PVT V2
B1 emerged as the best-performing larger model, achieving a test accuracy of
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Fig. 4. the performance of the selected model to serve as teacher: PVT

96.5%, precision of 96.4%, recall of 96.0%, and an F1-score of 95.7%. However,
PVT V2 B1 showed early instability (see Fig. 4) due to class imbalance, causing
decreasing validation accuracy and convergence issues at epoch 40.

4.2 Results of step 02: Transfer learning on smaller models

In a second experiment, a lightweight MobileViT-V2-050 model is evaluated
, under the same parameter tuning to assess their performance on MS lesion
classification. The results are illustrated in the table bellow (see Table 3) The

Fig. 5. TL on smaller lightweight vision transformer: MobileViTv2

divergence between training and validation curves in Fig. 5 reveals a general-
ization gap, indicating overfitting. While training loss consistently declines and
accuracy nears 100%, validation loss and accuracy stop improving early whith
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significantly lower performance that training. The persistent gap in validation
metrics suggest limited generalization to unseen data.

Table 3. Evaluation of transfer learning performance using smaller models
on MS dataset (in %)

Model params Test/val Accuracy (%) Precision (%) Recall (%) Fscore (%)
MobileViTV2 1.37M Val 89.07 90.29 82.30 86.11

Test 91.25 90.51 87.94 89.21

4.3 Results of step 03: knowledge distillation:

The third experiment focused on applying knowledge distillation to compress
and optimize model performance for MS lesion classification. A high-capacity
PVT_V2-Large model served as the teacher, while lightweight architectures
MobileViT-V2-050 is selected as student models. Various distillation settings
were explored, including different temperature values (T ∈ {3, 10, 100}) to con-
trol output softness and alpha values (α ∈ [0.3, 0.9]) to balance student and dis-
tillation losses. Two loss function combinations, including binary cross-entropy
and Kullback–Leibler divergence, were tested.

Table 4. Performance Comparison of Student Models With and Without
Knowledge Distillation (in %)

Student Model T α Accuracy Precision Recall F1-score
MobileViT_v2_050 (With Distillation)

3 0.5 94.46 94.20 92.20 93.19
3 0.7 92.71 95.67 86.17 90.67
10 0.7 90.52 92.22 84.04 87.94
10 0.5 92.57 92.62 89.01 90.78
3 0.4 92.42 93.89 87.23 90.44

100 0.7 88.78 89.88 81.91 85.71
MobileViT_v2_050 (Without Distillation) 91.25 90.51 87.94 89.21

According to the results obtained (see Table 4), Knowledge distillation signifi-
cantly enhanced lightweight model performance in MS lesion classification, with
MobileViT-V2-050 showing a 4% F1-score improvement (93.19% vs. 89.21%)
using T = 3 and α = 0.5 . Moderate temperatures (T = 3, 10) improved general-
ization, while higher values degraded performance. Lower alpha values (0.4–0.5)
improve the distillation loss, resulting in better loss-accuracy balance and more
effective training outcomes.
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5 Discussion

MS lesion detection is challenging due to their variability in size, shape, and
location, often requiring expert-guided segmentation. This study leverages Vi-
sion Transformers and transfer learning, selecting the most performing model
as a teacher for knowledge distillation to train smaller, efficient student mod-
els. The approach avoids complex 3D segmentation, data augmentation, or deep
architectures like U-Net while maintaining high accuracy. Notably, as seen in
Table 2, PVTv2 demonstrate the efficiency and practicality of the proposed ap-
proach leveraging knowledge distillation technique to enhance the performance
of transfer learning on smaller models like MobileViTv2 with just one millions
of parameters. An improvement of 4% was achieved on a limited 2D imbalanced
dataset using MobileViT as the student model (see Table 4), which has 10.2
times fewer parameters than the teacher model (PVT), suggesting that a larger
size gap between teacher and student leads to better distillation performance
and reduces the student’s generalization gap between training and validation.

Table 5. Performance of our proposed MS lesion detection approaches on
Kaggle multiple sclerosis dataset

Ref Model Approach Performance
(%)

Parameters
(M)

Validation

[25] Hybrid CNN-ML Combination of DenseNet201,
ResNet50, and classical classi-
fiers (SVM and KNN)

ACC: 97

∼45 10-fold CV

[26] ExMPLPQ Patch-based handcrafted fea-
ture extraction using multi-
parameter LPQ + INCA fea-
ture selection + Fine kNN
classifier

ACC: 98.22
– 10-fold CV

Ours PVT_v2 Teacher model via KD ACC: 96.5,
F1: 95.71 14 20% split

MobileViT_v2 Student model via KD ACC: 94.46,
F1: 93.19 1.48 20% split

Unlike the hybrid method used by [25], which combines DenseNet201, ResNet50,
and traditional classifiers like SVM and KNN, relying on multiple deep networks
and added classifier overhead, and the handcrafted feature-based method in [26],
which uses patch-based local phase quantization (LPQ) and Fine kNN with 10-
fold cross-validation, our proposed approach achieves comparable performance
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with significantly reduced complexity using a lightweight MobileViTV2 student
model. It requires 30× fewer parameters than the combined DenseNet201 and
ResNet50 model. Moreover, our method operates end-to-end without any seg-
mentation step or handcrafted feature extraction, making it more suitable for
practical deployment and large-scale screening in clinical or resource-constrained
environments.

In this context, our results are projected onto other methods that used dif-
ferent datasets for subjective evaluation. The comparative analysis in Table 6 in-
cludes comprehensive dataset specifications to contextualize performance differ-
ences arising from data characteristics,and it is noteworthy that many advanced
MS lesion detection methods use complex 3D segmentation, manual annotations,
and ensemble learning, making them computationally intensive.

Table 6. Comparison of State-of-the-Art MS Lesion Detection Methods Uti-
lizing MRI Data

Ref Year Model Approach Dataset Size Access Performance
[5] 2009 3D Segmentation Multiscale graph partition-

ing w/decision forest
Multichannel MRI 91 Private ACC: 98%

[2] 2022 QSMRim-Net 3D ResNet + radiomic fusion
+ DeepSMOTE

Cornell MS-QSM 688 Private ACC:
97.6%, F1:
70%

[7] 2022 3D U-Net Supervised segmentation
+ data augmentation

CLAIMS 440 Private ACC: 85%

[6] 2024 Hybrid CNN-ViT
Ensemble

Swin Transformer +
MobileNet RF

Kaggle MS 2023 765 Public ACC: 99%

[8] 2024 3D U-Net Ensem-
ble

Aggregated ensemble predic-
tions

In-house dataset 491 Private F1:70%

Techniques like 3D U-Net [5, 7, 8], QSMRim-Net [2], and 2D hybrid CNN-
Transformer models [6] achieve high accuracy but rely on heavy data process-
ing, manual input, and complex pipeline architectures, limiting their practical
deployment.

By using transfer learning from ImageNet with knowledge distillation ap-
proach and without any segmentation method, this approach reduces reliance
on manual annotations and complex preprocessing, while still preserving critical
diagnostic in-sight, making it highly practical for real-world deployment.

6 Conclusion

This study presents a novel approach for multiple sclerosis (MS) lesion detec-
tion in brain MRI using knowledge distillation with vision transformers (ViTs),
without relying on explicit segmentation models. By representations from large
pretrained PVT teacher models to smaller student models, our method signifi-
cantly improves performance, achieving a 4% gain improvement. Our approach
has practical value in healthcare, particularly in resource-constrained environ-
ment. The ability to distill powerful attention representations into lightweight
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models like MobileViT enables faster, more accessible MS detection tools and
supports early intervention, all critical in managing disease progression. For fu-
ture work, we aim to expand this framework by investigating knowledge distilla-
tion across various model architectures, focusing on the relationship between the
complexity of teacher and student models and the optimal size difference needed
to achieve higher performance. Additionally, we plan to evaluate the approach
on larger, more diverse datasets and explore its integration into clinical decision
support systems for longitudinal MS monitoring.
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