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Abstract. This study investigates the potential of multi-axial accelerometers (ACC) for a comprehensive assessment of 

neuromuscular dysfunction in Parkinson's disease (PD) patients. Emphasizing the importance of utilizing data 

from three axes (𝐴𝐶𝐶𝑋,𝐴𝐶𝐶𝑌,and 𝐴𝐶𝐶𝑍) to discriminate the movement characteristics, the proposed method 

leverages Wavelet Cepstral Coefficients (WCC) extracted from ACC data. A k-Nearest Neighbour (KNN) 

classifier is employed to differentiate between normal and Parkinson. Feature selection based on mutual 

information criteria further optimizes the classification process in terms of complexity and accuracy. Evaluation 

using the ECOTECH project database yielded a promising accuracy of vectors of 98.91% with 100% of signals 

classification rate(CRs) using only two features selected using the Conditional Infomax Feature Extraction filter 

selection strategy were sufficient to explain the two classes (N) and (P). These findings suggest that 𝐴𝐶𝐶𝑌 data 

combined with WCC feature extraction and KNN classification holds promise as efficient tool for PD diagnosis 

and potentially monitoring disease progression. 

Keywords:  ACC Signal, Features Extraction, WCC, K-nearest Neighbours, Features Selection, Mutual Information, 

Classification, Parkinson's Disease (PD). 

1 Introduction 

Parkinson's disease, often shortened to PD, is a neurodegenerative disorder. This means it involves the 
progressive loss of nerve cells in the brain. In PD, this loss primarily occurs in a specific area called the substantia 
nigra, which plays a crucial role in movement control [1]. 
 

The diagnosis of Parkinson's disease (PD) involves identifying both motor and non-motor symptoms, which 
can be challenging due to the progressive nature of the disease. Accurate and early diagnosis is crucial for 
effective management and treatment. Traditional diagnosis methods are often subjective, leading to a growing 
need for objective tools. Recent advancements in signal processing and machine learning have shown high 
potential in improving the accuracy of PD diagnosis. This study focuses on utilizing accelerometer (ACC) signals 
and advanced feature extraction techniques to develop a robust classification system for distinguishing between 
healthy individuals and those with PD [2]. 

 
Accelerometer signals (ACC) with X, Y, and Z axes provide crucial insights into movement dynamics and 

orientation tracking. An accelerometer detects acceleration, which is the rate of change in velocity, along three 
orthogonal axes [3]: 

- X-axis: Represents forward-backward movement. Positive values indicate forward acceleration, while 
negative values indicate backward acceleration. 

- Y-axis: Reflects side-to-side movement. Positive values denote rightward acceleration, while negative 
values denote leftward acceleration. 

- Z -axis: Corresponds to up-down movement. Positive values indicate upward acceleration, and negative 
values indicate downward acceleration. 

Several research works are carried out for the analysis, evaluation and identification of PD using ACC signals. 

Veltink et al [1] investigated the use of uniaxial accelerometers to detect both static (stationary) and dynamic 

(moving) activities. Key features extracted in this approach include acceleration peaks, duration of movements, 

and transitions between different types of activities. Mathie et al [4] emphasized the use of accelerometery for 
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continuous, long-term monitoring of human movement, extracting features such as amplitude, frequency, and 

variability of movement, which provide detailed and sustained data about a person's physical activity. Hossen et 

al. [5] presented a method for distinguishing between Parkinsonian tremor (PT) and essential tremor (ET) using 

statistical signal characterization of accelerometer signals. Features such as power spectral density, signal 

entropy, and time-frequency representations are crucial for this classification. Electromyogram (EMG) and ACC 

signals continue to be used in the classification of neuromuscular dysfunctions [6]. In the study developed by 

Ghassemi et al, [7], the authors explored the combined use of accelerometer and electromyography analysis to 

differentiate between ET and PD. Aich et al [8] focused on using a wearable accelerometer to detect and 

potentially predict freezing of gait (FoG) in PD patients. Important features included stride length, stride time, 

gait speed, and variability in gait patterns, which are indicative of gait disturbances in PD. Aich et al [9]  also 

demonstrated that stride interval fluctuations are increased in PD and correlate with the severity of the disease, 

using features such as stride interval variability, mean stride interval, and the coefficient of variation to quantify 

these fluctuations. 

The challenge of classifying neurodegenerative disorders, such as Parkinson's disease, is closely related to 

feature extraction and classification approaches, which were primarily developed in the context of gait analysis 

[10]. Rastegari et al [11] used machine learning to classify Parkinson's disease, extracting informative features 

from accelerometer data related to gait and employing algorithms like Support Vector Machine (SVM) and 

Random Forests to distinguish PD patients from healthy subjects. In [12], specific features from acceleration 

signals have been extracted and used with an SVM to classify them as representing either normal gait or freezing 

of gait (FOG). The authors of [13] proposed a multiclass classification to determine the severity level of PD 

(mild, moderate, severe) using both empirical wavelet packet transform (EWPT) and empirical wavelet transform 

(EWT) on movement and audio signals.  

The principal aim of the present work is to implement a high-performance diagnostic system for Parkinson's 

disease (PD). This involves the method for extracting WCC parameters. The work also focuses on studying the 

importance of each axis of the ACC signal for diagnostic purposes and the fusion of information from different 

ACC signal axes by applying parameter selection strategies based on mutual information. 

The organization of this study is as follows. Section 2 outlines the proposed classification system, including 
the feature extraction and selection steps. Section 3 presents the experiments and their results. Section 4 concludes 
the paper with suggestions for future research. 

 

2 Classification of ACC Signal 

2.1 Dataset 

The French national research project ECOTECH database [14] is a comprehensive resource used for the study 

of neuromuscular dysfunction, particularly in the context of Parkinson's disease (PD). This database includes 

detailed recordings of electromyographic (EMG) and accelerometer (ACC) signals from six different muscles. 

The muscles typically studied in this database are selected to provide a thorough understanding of movement and 

muscle activity in both healthy individuals and those with PD. In this particular research, we focused on the 

biceps muscle of the ACC signal with X, Y, and Z. Data from this muscle were used to analyze movement 

patterns and muscle activity in eight Parkinsonian patients and nine healthy subjects. The tibialis muscle was 

chosen due to its significant role in arm movements, which are often affected in PD. Accelerometric signals, 

derived from tri-axial sensors (X, Y, Z), provide precise measurements of body movements by capturing 

acceleration variations across three dimensions.  measure accelerations at sampling frequencies ranging from 50 

Hz to 500 Hz, with resolutions of 8 to 16 bits and typical sensitivities of ±2 g to ±16 g. Raw recorded signals, 

which may include noise artifacts caused by external vibrations, are generally filtered (e.g., using low-pass or 

band-pass filters) to isolate relevant frequencies, typically between 0.1 Hz and 20 Hz. Tables 1 and 2 present a 

description of the data base.  

 



Table 1.  Distribution of data in testing and training dataset. 

Subjects Signal duration of ACC (second) 

Data base for 

training phase 

Control1 2.6069 

Control2 1.1213 

Control3 1.4400 

Control4 1.4744 

Data base for 

testing phase 

Control5 1.1164 

Control6 1.4346 

Control7 0.6530 

Control8 0.7712 

Control9 2.8571 

 

Table 2. Distribution of data in testing and training dataset. 

 

Subjects Signal duration of ACC (second) 

Data base for 

training phase 

Park1 0.3777 

Park2 0.9132 

Park3 0.4866 

Park4 3.9616 

Data base for 

testing phase 

Park5 1.1288 

Park6 0.8915 

Park7 0.4474 

Park8 0.4649 

2.2 Proposed Feature Extraction Method   

A robust classification system relies on effective feature extraction. In this process, each signal is initially 

transformed into a sequence of overlapping windowed signals, and each of these windowed signals is then 

converted into a feature vector. As a result, the ACC signal is represented as a sequence of these feature vectors. 

For this study, we utilized the descriptors Discrete Wavelet Energy (DWE), Log Wavelet Energy (LWE), and 

Wavelet Cepstral Coefficients (WCC) [15]. The choice of this features as descriptors is justified by their ability to 

capture detailed and discriminative information from accelerometer signals. WCC combines both time and 

frequency analyses, allowing for better distinction of subtle movement characteristics essential for identifying 

neuromuscular dysfunctions such as those associated with Parkinson's disease. Their robustness against noise and 

individual variations makes them a superior option for precise and reliable classification Figure 1 illustrates the 

procedure for extracting these attributes. 

 

Fig. 1.  block diagram illustrating the process of DWE, LWE and WCC features extraction. 



2.3 Classification System 

The proposed classification system comprises learning and testing phases. In the learning phase, features are 
extracted and models for two classes, P and N, are constructed using the KNN method. The testing phase involves 
extracting features (Discrete Wavelet Energy (DWE), Log Wavelet Energy (LWE), and Wavelet Cepstral 
Coefficients (WCC)). The feature selection step in this work involves choosing the relevant features by 
maximizing mutual information. This process is conducted using various feature selection strategies, such as JMI 
[16], ICAP [17], CIFE [18], MRMR [19], and CMI [20]. Optimizing the KNN algorithm's performance involves 
identifying the most relevant features and classifying each feature vector using a KNN classifier. Subsequently, 
a voting rule is applied to classify sequences of feature vectors from the test database to determine the 
predominant class. The ACC signal database used originates from the French national project ECOTECH [14] 
and includes signals collected from multiple subjects, including 9 healthy individuals and 8 subjects with 
Parkinson's disease. 

Fig. 2. Flowchart of the proposed automated classification system. 

The classification performance of the ACC signal classification systems is evaluated using two metrics: the 
classification rate of signals (CRs) and the averaged accuracy of vectors (CRv). 

The CRv is calculated by concatenating all signals and computing the ratio of correct decisions to the total 
number of input feature vectors, as defined by: 

𝐶𝑅𝑣(%) =
 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑐𝑜𝑔𝑛𝑖𝑠𝑒𝑑 𝑠𝑖𝑔𝑛𝑎𝑙𝑠 

total 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑠𝑡𝑒𝑑 𝑠𝑖𝑔𝑛𝑎𝑙𝑠
                                           (1) 

Additionally, the classification rate of signals (CRs) is determined using the majority voting rule, which assigns 

a class label based on the highest number of votes. This voting rule is applied separately for ACC signals. The 

CRs metric represents the ratio of correctly classified signals to the total number of signals and is defined as: 

𝐶𝑅𝑠 =  
 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠 𝑚𝑎𝑑𝑒 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑠𝑖𝑔𝑛𝑎𝑙𝑠

 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑖𝑔𝑛𝑎𝑙𝑠
    (2) 

2.4 Features Selection 

In large dimensional problems, dimensionality reduction of the number of features is often a necessity. The 

reduction can be achieved either by transforming the features and by selecting them. The solution to this problem 

consists of two methods. The first method is transforming the features of an initial set ℱ of i features 
{𝑁1, 𝑁2, … , 𝑁𝑖} in a low dimensional subset of k features. But this approach requires calculating all the features 



as well as choosing a suitable criterion for defining transformation, which is not a straightforward task. The 

second method consists in selecting the k most relevant features {𝑁𝑃1
 , 𝑁𝑃2

 , … , 𝑁𝑃𝑘
 } from the set M which form 

the subset  𝒮𝑜𝑝𝑡. This approach will be preferred; because it needs only the k selected features to be computed for 

the classification task in the testing phase. In opposite to the previous approach. 

The feature selection procedure uses an information measure of a subset of features useful for a classification 

task.  𝒮𝑜𝑝𝑡 is an optimal subset of features if its information is maximum for the classification task . Mutual 

Information (MI) is often used as a measure of the quantity of information because of its ability of assessing the 

nonlinear statistical dependency between variables. So, the subset  𝒮𝑜𝑝𝑡  is chosen in such a way that the MI 

between  𝒮𝑜𝑝𝑡 and the class label C is maximized: 

 𝒮𝑜𝑝𝑡  = 𝑎𝑟𝑔 max
𝑆⊂𝑀

𝐼(𝐶; 𝑆)                                                                           (3) 

However, the number of combinations of features for exhaustively constructing the sets  𝒮 to be tested rapidly 

becomes prohibitive when the size of  𝒮 grows. To circumvent this problem, ‘‘greedy forward” search strategy 

can be employed. The search is a one-by-one selection procedure that gives at each step 𝑗 the best feature 𝑁𝑃𝑗
from 

the unselected features set. This new selected feature 𝑁𝑃𝑗
  grows the already selected subset  𝒮𝑗−1 by appending 

it as  𝒮𝑗 =  𝒮𝑝𝑗
 ∪   𝒮𝑗−1: 

𝑁𝑝𝑗
 = 𝑎𝑟𝑔 max

𝑁𝑖∈ℱ− 𝒮𝑗−1

[𝐼(𝐶; 𝑁𝑖,  𝒮𝑗−1)]                                           (4)  

Since 𝐼(𝐶; 𝑁𝑖 ,  𝒮𝑗−1) = 𝐼(𝐶;  𝒮𝑗−1) + 𝐼(𝐶; 𝑁𝑖{ 𝒮𝑗−1) [21], (4) can be reduced to:  

   𝑁𝑝𝑗
 = 𝑎𝑟𝑔 max

𝑁𝑖∈ℱ− 𝒮𝑗−1

[𝐼(𝐶; 𝑁𝑖\ 𝒮𝑗−1)]                                                 (5) 

 Most of the algorithms propose a simplification of (4) following different strategies like MIFS, MRMR, JMI, 

CIFE, CMIM, MIM, and  ICAP ( [22]; [23] [24]. The derivation of (4) is given below, for three selected strategies. 

 ICAP (Interaction Capping) [17]  

𝑁𝑃𝑗
= 𝑎𝑟𝑔 𝑚𝑎𝑥

𝑁𝑖∈𝐹− 𝒮𝑗−1

[𝐼(𝐶; 𝑁𝑖) − ∑ 𝑚𝑎𝑥 [𝐼(𝐶; 𝑁𝑖; 𝑁𝑠𝑘
)

𝑗−1
𝑘=1 , 0]]             (6)° 

 

 CIFE (Conditional Infomax Feature Extraction) [18]  

𝑁𝑃𝑗
= 𝑎𝑟𝑔 𝑚𝑎𝑥

𝑁𝑖∈𝐹− 𝒮𝑗−1

[𝐼(𝐶; 𝑁𝑖) ∑ 𝐼(𝐶; 𝑁𝑖; 𝑁𝑘)𝑗−1
𝑘=1 ]      (7) 

 

 JMI (Joint Mutual Information) [16]  

𝑁𝑃𝑗
 = 𝑎𝑟𝑔 𝑚𝑎𝑥

𝑁𝑖∈𝐹− 𝒮𝑗−1

[𝐼(𝐶; 𝑁𝑖) −
1

𝑗−1
∑ 𝐼(𝐶; 𝑁𝑖; 𝑁Pk)𝑗−1

𝑘=1 ]                             (8)) 

 

 CMIM (Conditional Mutual Information Maximization) [20] 

        𝑁𝑝𝑗+1
 = 𝑎𝑟𝑔 max

𝑁𝑖∈ℱ−𝒮𝑗

[ min
𝑁𝑝𝑘

∈𝒮𝑗

[𝐼(𝐶; 𝑁𝑖\𝑁𝑝𝑘
) ]] 

     (9) 

 MIFS (Mutual Information Feature Selection) [25] 



𝑁𝑝𝑗
 = 𝑎𝑟𝑔 𝑚𝑎𝑥

𝑁𝑖∈ℱ\𝒮𝑗−1

𝐼(𝐶; 𝑁𝑖)                                                                               (10) 

 MIM (Mutual Information Maximization) [20] 

𝑁𝑝𝑗
 = 𝑎𝑟𝑔 max

𝑁∈𝐹−𝒮𝑗

[𝐼𝑀(𝐶; 𝑁𝑖)]                                                                          (11) 

 MRMR (Maximum-Relevance Minimum Redundancy) [19]  

𝑁𝑝𝑗
= 𝑎𝑟𝑔 𝑚𝑎𝑥

𝑁𝑖∈𝐹− 𝒮𝑗−1

[𝐼(𝐶; 𝑁𝑖) −
1

𝑗 − 1
∑ 𝐼(𝑁𝑖; 𝑁𝑝𝑘

)

𝑗−1

𝑘=1

] 

(12) 

3 Experimental Results 

3.1 Experiments 

In this section, we outline the various experiments we conducted to evaluate the performance of our algorithm 
using features extracted from the ACC signals of the ECOTECH dataset [14] . These experiments utilized a  KNN 
classifier. The tests included the following: 

- Explored the optimal feature configuration by evaluating different feature types (DWE, LWE, and WCC) 
based on the classification rate for ACC signals from various channels (X, Y, and Z) 

- Examined the optimal signal channel by comparing the classification rates of ACC signals across the X, 
Y, and Z axes. 

-     Applied a mutual information (MI)-based feature selection method using multiple strategies MIFS, ICAP, 
JMI, CIFE, MIM, MRMR, and CMIM to identify the optimal signal features. 

-     Used the KNN classifier to validate the relevance of the selected features at iteration j. 

3.2 Results and Discussion 

 

Comparative Study between Different Features Type  

We carried out comparative experiments with respect to different parameters (DWE, LWE and   WCC) for 

different modality  𝐴𝐶𝐶𝑋, 𝐴𝐶𝐶𝑌 , 𝐴𝐶𝐶𝑍 𝑎𝑛𝑑 𝐴𝐶𝐶𝑋𝑌𝑍 to investigate the influence of these factors on the 

classification performance. For these descriptors, we consider the mother wavelet Coif 5 for a decomposition 

level 𝐿𝑑𝑒𝑐𝑜𝑚𝑝 = 4 for analysis frame duration equal to 132.91ms as reference features and using the KNN 

classifier (taking the optimal K ).  

𝐴𝐶𝐶𝑋 signal 

The results of a classification task, highlight the critical importance of feature. Table 3 compares the 𝐶𝑅𝑣  
and 𝐶𝑅𝑠  achieved for an 𝑨𝑪𝑪𝑿 signal using different features. This table suggests that using five-dimensional 

feature vectors derived from WLE or WCC features enables achieving an optimal 𝐶𝑅𝑣 of 91.62 %  and CRs of 

100% with optimal number of nearest neighbors  K equal to 22. This indicates that models employing LWE or 

WCC features outperform those using other wavelet-based features (such as DWE) due to their ability to analyze 



frequency content and temporal dynamics. This finding underscores the importance of carefully selecting features 

to optimize classification performance.  

Table 3. Comparison of 𝐶𝑅𝑣 (%)  and  𝐶𝑅𝑠(%)   for different feature types with optimal number of nearest neighbors  

K using Coiflets (coif 5) at level 4 [15] for the modality  𝐴𝐶𝐶𝑿. 

𝑨𝑪𝑪𝐗 𝐃𝐖𝐄 𝐋𝐖𝐄 𝐖𝐂𝐂  
𝑲𝒐𝒑𝒕𝒊𝒎𝒂𝒍 42 22 22 

𝑪𝑹(%) 56.88 (5)  91.62(5) 91.62(5) 

𝑪𝑹𝒔(%) 100 (5) 100 (5) 100 (5) 

𝐴𝐶𝐶𝑌 signal 

Table 4 presents the classification outcomes for the 𝑨𝑪𝑪𝒀 signal using different feature types: DWE, LWE, 

and WCC. The table underscores the importance of feature optimization in achieving optimal classification 

performance. Specifically, LWE and WCC features deliver superior performance, achieving a validation CRv of 

96.93%  with an optimal number of nearest neighbors  (𝑲𝒐𝒑𝒕𝒊𝒎𝒂𝒍) equal to 5. In contrast, DWE features result in 

a considerably lower CRv of 67.25% at k=6 clusters. Moreover, the CRs is uniformly 100% for all three feature 

types. These results highlight the impact of feature selection on classification accuracy and suggest that LWE 

and WCC offer a more effective approach compared to DWE. 

Table 4. Comparison of 𝐶𝑅𝑣 (%)  and  𝐶𝑅𝑠(%)   for different feature types  with optimal number of nearest neighbors K 

using Coiflets (coif 5) at level 4 [15] for the modality  𝐴𝐶𝐶𝑌. 

 
 
 

 
 
𝐴𝐶𝐶𝑍 signal 

As in the previous cases, Table 5 presents the CRv   and CRs  for the 𝐴𝐶𝐶Zsignal using three different feature 

types: DWE, LWE, and WCC. For DWE, a CRv of 61.31% and a CRs of 100% are achieved at k = 10, whereas 

both LWE and WCC obtain an impressive CRv of 94.28% and a perfect CRs of 100% when k is set to 39. These 

results further confirm the superior performance of LWE and WCC over DWE for the classification of the 

𝐴𝐶𝐶Zsignal. 

Table 5 . Comparison of CRv (%)  and of CRs(%)  for different feature types  with optimal number of nearest neighbors K 
using Coiflets (coif 5) at level 4 [15] for the modality  𝐴𝐶𝐶Z. 

𝐀𝐂𝐂𝐙 𝐃𝐖𝐄 𝐋𝐖𝐄 𝐖𝐂𝐂  

𝐊𝐨𝐩𝐭𝐢𝐦𝐚𝐥 10 39 39 

𝐂𝐑𝐯(%) 61.31 (5) 94.28(5) 94.28(5)  

𝐂𝐑𝐬(%) 100 (5) 100 (5) 100 (5) 

𝐴𝐶𝐶𝑋𝑌𝑍 signal 

In this case, all three signals are collected and analyzed. Table 6 presents the classification results for the 

𝐴𝐶𝐶𝑋𝑌𝑍 (accelerometer data for X, Y, and Z) signal using three different feature types: DWE, LWE, and WCC. 

The optimal number of nearest neighbors 𝐾𝑜𝑝𝑡𝑖𝑚𝑎𝑙 is 5 for DWE, whereas LWE and WCC both achieve optimal 

performance with K set to 27. In terms of CRv and CRs, DWE reaches 62.81% at k=5, while LWE and WCC 

significantly outperform it, both achieving identical CRv values of 94.82%. This result is obtained when K is set 

to 27. Moreover, every feature type consistently achieves a CRs  of 100%. 

𝑨𝑪𝑪𝒀 𝑫𝑾𝑬 𝑳𝑾𝑬 𝑾𝑪𝑪  

𝑲𝒐𝒑𝒕𝒊𝒎𝒂𝒍 6 5 5 

𝑪𝑹𝒗(%) 67.25 (5) 96.93 (5) 96.93 (5) 

𝑪𝑹𝒔(%) 100 (5) 100 (5) 100 (5) 



These findings highlight the superior effectiveness of LWE and WCC over DWE for the  𝐴𝐶𝐶𝑋𝑌𝑍signal in 

this classification task 

Table 6. Comparison of CRv (%)  and  𝐶𝑅 𝑠(%)   for different feature types  with optimal number of nearest neighbors K 
using Coiflets (coif 5) at level 4 [15]  for the modality  𝑨𝑪𝑪𝐗𝐘𝐙. 

𝐀𝐂𝐂𝐗𝐘𝐙 𝐃𝐖𝐄 𝐋𝐖𝐄 𝐖𝐂𝐂  

𝐊𝐨𝐩𝐭𝐢𝐦𝐚𝐥 5 27 27 

𝐂𝐑𝐯(%) 62.81(15) 94.82(15) 94.82(15) 

𝐂𝐑𝐬(%) 100 (15) 100 (15) 100 (15) 

In the next sections, the value of nearest neighbor’s K will be set to 27 be chosen. 

Feature selection 

This section addresses the challenge of feature selection for the classification task, aiming to identify the most 

relevant features. Features are deemed relevant if they effectively differentiate between the two classes, normal 

and Parkinson. Various selection algorithms employed in this experiment differ in terms of the extent to which 

they consider redundancy between a subset of already selected variables and those yet to be chosen. The 

algorithms under consideration include MRMR, JMI, CMIM, ICAP, MIFS or CIFE [22]. These algorithms are 

grounded in the principle of maximizing mutual information, as described in detail in Section 2.4.  

In this section, we consider two criteria to determine the optimal number of relevant features after the selection 

process. For the first criterion (CRT1), the ideal number is the dimension of the smallest subset of selected 

features that achieves a classification rate (CR) equal to or higher than the CR of the full feature set. For the 

second criterion (CRT2), the ideal number is the dimension of the subset of features that yields the highest CR. 

The classification results using different feature selection strategies and the two stopping criteria (CRT1 and 

CRT2) are presented in Table 7. The key observations from these results are as follows: 

 Under Criterion 1 (CR ≥ CR_end): 

o The JMI strategy achieves a CRv of 94.89% using a subset of 3 features, which is comparable to the 

MRMRR strategy. 

o The CIFE strategy, however, achieves the highest CRv of 98.91% while selecting only 2 features, indicating 

the most efficient dimensionality reduction. 

o The ICAP method selects a slightly larger subset (4 features) but still achieves a high CRv of 98.56%. 

 Under Criterion 2 (CR = max(CR)): 

o The CIFE and ICAP strategies both achieve the highest CRv, but CIFE requires only 2 features with CRv of 

98.91%, making it the most effective for dimensionality reduction. 

o The MIFS, CMIM, and MIM methods all achieve a CRv of 98.09% but differ in the number of selected 

features, with MIFS selecting the largest subset (7 features). 

o The MRMR strategy consistently selects the largest subset of features under both criteria. 

 

Table 7.  CR and number of relevant features by using MRMR,CMIM, CIFE, JMI,MIFS and ICAP strategies with selection 

criteria CRT1 and CRT2 [24]. 

 

 Criterion 1 

CR>=CR(end) 

Criterion 2 

CR==max(CR) 



 Number of 

relevant 

features 

CRv (%) 

 

CRs(%)  Number of 

relevant 

features 

CRv (%) 

 

CRs(%) 

𝐌𝐑𝐌𝐑 3 94.89 100 5 97.75 100 

𝐂𝐌𝐈𝐌 2 96.66 100 5 98.09 100 

𝐉𝐌𝐈 3 94.89 100 5 97.00 100 

𝐌𝐈𝐅𝐒 2 97.27 100 7 98.09 100 

𝐌𝐈𝐌 2 96.66 100 4 98.09 100 

𝐈𝐂𝐀𝐏 4 98.56 100 4 98.56 100 

𝐂𝐈𝐅𝐄 2 98.91 100 2 98.91 100 

More information about the first ten selected features, as determined by all feature selection strategies, is 

shown in Table 8. 

Table 8. The first ten selected features obtained for different MI strategies for the WCC descriptor of   the 

three modalities 𝐴𝐶𝐶𝑋𝑌𝑍. 

 Subset of selected features 

𝑴𝑹𝑴𝑹 𝐴𝐶𝐶𝑌;8
(𝑊𝐶𝐶)

;𝐴𝐶𝐶𝑍;11
(𝑊𝐶𝐶)

;𝐴𝐶𝐶𝑌;7
(𝑊𝐶𝐶)

;𝐴𝐶𝐶𝑌;10
(𝑊𝐶𝐶)

;  𝐴𝐶𝐶𝑋;1
(𝑊𝐶𝐶)

;𝐴𝐶𝐶𝑋;2
(𝑊𝐶𝐶)

; 

 𝐴𝐶𝐶𝑍;12
(𝑊𝐶𝐶)

;𝐴𝐶𝐶𝑋;4
(𝑊𝐶𝐶)

;𝐴𝐶𝐶𝑍;14
(𝑊𝐶𝐶)

; 𝐴𝐶𝐶𝑍;15
(𝑊𝐶𝐶)

;𝐴𝐶𝐶𝑍;11
(𝑊𝐶𝐶)

; 

𝑪𝑴𝑰𝑴 𝐴𝐶𝐶𝑌;8
(𝑊𝐶𝐶)

;𝐴𝐶𝐶𝑌;7
(𝑊𝐶𝐶)

; 𝐴𝐶𝐶𝑍;15
(𝑊𝐶𝐶)

;𝐴𝐶𝐶𝑌;5
(𝑊𝐶𝐶)

; 𝐴𝐶𝐶𝑋;1
(𝑊𝐶𝐶)

;𝐴𝐶𝐶𝑋;3
(𝑊𝐶𝐶)

;𝐴𝐶𝐶𝑍;12
(𝑊𝐶𝐶)

;𝐴𝐶𝐶𝑌;6
(𝑊𝐶𝐶)

;𝐴𝐶𝐶𝑍;14
(𝑊𝐶𝐶)

;;𝐴𝐶𝐶𝑋;3
(𝑊𝐶𝐶)

;   

𝑱𝑴𝑰 𝐴𝐶𝐶𝑌;8
(𝑊𝐶𝐶)

;𝐴𝐶𝐶𝑋;5
(𝑊𝐶𝐶)

;𝐴𝐶𝐶𝑍;15
(𝑊𝐶𝐶)

;𝐴𝐶𝐶𝑌;5
(𝑊𝐶𝐶)

;𝐴𝐶𝐶𝑍;11
(𝑊𝐶𝐶)

;𝐴𝐶𝐶𝑌;10
(𝑊𝐶𝐶)

; 𝐴𝐶𝐶𝑌;6
(𝑊𝐶𝐶)

;𝐴𝐶𝐶𝑌;9
(𝑊𝐶𝐶)

;𝐴𝐶𝐶𝑍;14
(𝑊𝐶𝐶)

;𝐴𝐶𝐶𝑋;3
(𝑊𝐶𝐶)

;  

𝑴𝑰𝑭𝑺 𝐴𝐶𝐶𝑌;8
(𝑊𝐶𝐶)

;𝐴𝐶𝐶𝑌;7
(𝑊𝐶𝐶)

;𝐴𝐶𝐶𝑋;1
(𝑊𝐶𝐶)

;𝐴𝐶𝐶𝑍;15
(𝑊𝐶𝐶)

;𝐴𝐶𝐶𝑋;5
(𝑊𝐶𝐶)

;𝐴𝐶𝐶𝑦;6
(𝑊𝐶𝐶)

;𝐴𝐶𝐶𝑋;3
(𝑊𝐶𝐶)

;𝐴𝐶𝐶𝑥;4
(𝑊𝐶𝐶)

;𝐴𝐶𝐶𝑌;11
(𝑊𝐶𝐶)

;

𝐴𝐶𝐶𝑌;10
(𝑊𝐶𝐶)

; 

𝑴𝑰𝑴 𝐴𝐶𝐶𝑌;8
(𝑊𝐶𝐶)

;𝐴𝐶𝐶𝑌;7
(𝑊𝐶𝐶)

;𝐴𝐶𝐶𝑋;1
(𝑊𝐶𝐶)

;𝐴𝐶𝐶𝑍;15
(𝑊𝐶𝐶)

;𝐴𝐶𝐶𝑋;4
(𝑊𝐶𝐶)

;𝐴𝐶𝐶𝑋;5
(𝑊𝐶𝐶)

;𝐴𝐶𝐶𝑌;6
(𝑊𝐶𝐶)

;𝐴𝐶𝐶𝑍;11
(𝑊𝐶𝐶)

;

 𝐴𝐶𝐶𝑌;9
(𝑊𝐶𝐶)

 ; 𝐴𝐶𝐶𝑍;13
(𝑊𝐶𝐶)

  

𝑰𝑪𝑷𝑨𝑷 𝐴𝐶𝐶𝑌;8
(𝑊𝐶𝐶)

;𝐴𝐶𝐶𝑌;7
(𝑊𝐶𝐶)

;𝐴𝐶𝐶𝑋;2
(𝑊𝐶𝐶)

;𝐴𝐶𝐶𝑍;13
(𝑊𝐶𝐶)

;𝐴𝐶𝐶𝑍;12
(𝑊𝐶𝐶)

;𝐴𝐶𝐶𝑋;3
(𝑊𝐶𝐶)

;𝐴𝐶𝐶𝑌;9
(𝑊𝐶𝐶)

;𝐴𝐶𝐶𝑍;11
(𝑊𝐶𝐶)

; 

𝐴𝐶𝐶𝑍;14
(𝑊𝐶𝐶)

;𝐴𝐶𝐶𝑍;15
(𝑊𝐶𝐶)

       

𝑪𝑰𝑭𝑬 𝐴𝐶𝐶𝑌;8
(𝑊𝐶𝐶)

;𝐴𝐶𝐶𝑌;9
(𝑊𝐶𝐶)

;𝐴𝐶𝐶𝑋;1
(𝑊𝐶𝐶)

;𝐴𝐶𝐶𝑍;15
(𝑊𝐶𝐶)

;𝐴𝐶𝐶𝑌;6
(𝑊𝐶𝐶)

; 𝐴𝐶𝐶𝑋;4
(𝑊𝐶𝐶)

;𝐴𝐶𝐶𝑋;5
(𝑊𝐶𝐶)

;𝐴𝐶𝐶𝑍;11
(𝑊𝐶𝐶)

;

 𝐴𝐶𝐶𝑌;7
(𝑊𝐶𝐶)

 ; 𝐴𝐶𝐶𝑍;13
(𝑊𝐶𝐶)

 

The table's results indicate that the 𝐴𝐶𝐶𝑌 feature is more relevant compared to the others. Through this 

experiment, we notice that the selected features of the ACC are of great importance in this task. Notably, all 

methods consistently identified the same initial feature ACC𝑌;8
(𝑊𝐶𝐶)

. 

Figure 3 illustrates how the classification rate varies with the number of selected features, evaluated using 

seven feature selection strategies: CMIM, JMI, ICAP, CIFE, MRMR, MIM, and MIFS. The analysis reveals that 

the best performance a CRv of 98.91% and a CRs of 100% is achieved with only two features selected by the 

CIFE strategy. This feature selection process effectively reduces the number of features needed for classification. 

Additionally, the graphs highlight the occurrence of the peaking phenomenon. 



 

Fig. 3  CRv(%) as a function of the number of selected features with the five feature selection strategies. 

4 Conclusions 

The classification and diagnosis of diseases affecting muscle activity has important clinical application. The 
present paper describes new approach to deal with Parkinson’s disease classification based on Accelerometer 
(𝐴𝐶𝐶𝑋; 𝐴𝐶𝐶𝑌; 𝐴𝐶𝐶𝑍;𝐴𝐶𝐶𝑋𝑌𝑍) signal. The method employs a k-NN classifier combined with a voting role. The 
proposed methodology is tested on a subset of (𝐴𝐶𝐶𝑋𝑌𝑍) signals obtained from the French national research 
project ECOTECH, dataset.  

The proposed method of feature extraction of the signals has been applied on 𝐷𝑊𝐸, 𝐿𝑊𝐸, 𝑊𝐶𝐶 descriptors. The 
results firstly illustrate the significance of the 𝐿𝑊𝐸 and 𝑊𝐶𝐶 descriptors in comparison to other descriptors 
whether the type of the signals. 

To reduce dimensionality, we applied several feature selection strategies based on the MI maximization criterion 
to the feature set. These strategies effectively reduced the number of features while achieving higher classification 
rate values than those obtained with the full feature set. Results indicate that the CIFE strategy yielded the highest 
accuracy of vectors of 98.91% with 100% of signals classification rate (CRs) with the fewest features selected 
(two features) using the Conditional Infomax Feature Extraction filter selection strategy.  

Additionally, our findings reveal that features from the ACC𝑌;8
(𝑊𝐶𝐶)

.  modality predominantly contribute to 
classification. Across all results, the first relevant feature consistently came from the 𝐴𝐶𝐶𝑌  modality, regardless 
of the selection strategy or descriptor type. 
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