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Abstract. This study investigates the potential of multi-axial accelerometers (ACC) for a comprehensive assessment of
neuromuscular dysfunction in Parkinson's disease (PD) patients. Emphasizing the importance of utilizing data
from three axes (ACCx,ACCy,and ACC;) to discriminate the movement characteristics, the proposed method
leverages Wavelet Cepstral Coefficients (WCC) extracted from ACC data. A k-Nearest Neighbour (KNN)
classifier is employed to differentiate between normal and Parkinson. Feature selection based on mutual
information criteria further optimizes the classification process in terms of complexity and accuracy. Evaluation
using the ECOTECH project database yielded a promising accuracy of vectors of 98.91% with 100% of signals
classification rate(CRs) using only two features selected using the Conditional Infomax Feature Extraction filter
selection strategy were sufficient to explain the two classes (N) and (P). These findings suggest that ACCy data
combined with WCC feature extraction and KNN classification holds promise as efficient tool for PD diagnosis
and potentially monitoring disease progression.

Keywords: ACC Signal, Features Extraction, WCC, K-nearest Neighbours, Features Selection, Mutual Information,
Classification, Parkinson's Disease (PD).

1 Introduction

Parkinson's disease, often shortened to PD, is a neurodegenerative disorder. This means it involves the
progressive loss of nerve cells in the brain. In PD, this loss primarily occurs in a specific area called the substantia
nigra, which plays a crucial role in movement control [1].

The diagnosis of Parkinson's disease (PD) involves identifying both motor and non-motor symptoms, which
can be challenging due to the progressive nature of the disease. Accurate and early diagnosis is crucial for
effective management and treatment. Traditional diagnosis methods are often subjective, leading to a growing
need for objective tools. Recent advancements in signal processing and machine learning have shown high
potential in improving the accuracy of PD diagnosis. This study focuses on utilizing accelerometer (ACC) signals
and advanced feature extraction techniques to develop a robust classification system for distinguishing between
healthy individuals and those with PD [2].

Accelerometer signals (ACC) with X, Y, and Z axes provide crucial insights into movement dynamics and
orientation tracking. An accelerometer detects acceleration, which is the rate of change in velocity, along three
orthogonal axes [3]:

- X-axis: Represents forward-backward movement. Positive values indicate forward acceleration, while
negative values indicate backward acceleration.

- Y-axis: Reflects side-to-side movement. Positive values denote rightward acceleration, while negative
values denote leftward acceleration.

- Z -axis: Corresponds to up-down movement. Positive values indicate upward acceleration, and negative
values indicate downward acceleration.

Several research works are carried out for the analysis, evaluation and identification of PD using ACC signals.
Veltink et al [1] investigated the use of uniaxial accelerometers to detect both static (stationary) and dynamic
(moving) activities. Key features extracted in this approach include acceleration peaks, duration of movements,
and transitions between different types of activities. Mathie et al [4] emphasized the use of accelerometery for
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continuous, long-term monitoring of human movement, extracting features such as amplitude, frequency, and
variability of movement, which provide detailed and sustained data about a person's physical activity. Hossen et
al. [5] presented a method for distinguishing between Parkinsonian tremor (PT) and essential tremor (ET) using
statistical signal characterization of accelerometer signals. Features such as power spectral density, signal
entropy, and time-frequency representations are crucial for this classification. Electromyogram (EMG) and ACC
signals continue to be used in the classification of neuromuscular dysfunctions [6]. In the study developed by
Ghassemi et al, [7], the authors explored the combined use of accelerometer and electromyography analysis to
differentiate between ET and PD. Aich et al [8] focused on using a wearable accelerometer to detect and
potentially predict freezing of gait (FOG) in PD patients. Important features included stride length, stride time,
gait speed, and variability in gait patterns, which are indicative of gait disturbances in PD. Aich et al [9] also
demonstrated that stride interval fluctuations are increased in PD and correlate with the severity of the disease,
using features such as stride interval variability, mean stride interval, and the coefficient of variation to quantify
these fluctuations.

The challenge of classifying neurodegenerative disorders, such as Parkinson's disease, is closely related to
feature extraction and classification approaches, which were primarily developed in the context of gait analysis
[10]. Rastegari et al [11] used machine learning to classify Parkinson's disease, extracting informative features
from accelerometer data related to gait and employing algorithms like Support Vector Machine (SVM) and
Random Forests to distinguish PD patients from healthy subjects. In [12], specific features from acceleration
signals have been extracted and used with an SVM to classify them as representing either normal gait or freezing
of gait (FOG). The authors of [13] proposed a multiclass classification to determine the severity level of PD
(mild, moderate, severe) using both empirical wavelet packet transform (EWPT) and empirical wavelet transform
(EWT) on movement and audio signals.

The principal aim of the present work is to implement a high-performance diagnostic system for Parkinson's
disease (PD). This involves the method for extracting WCC parameters. The work also focuses on studying the
importance of each axis of the ACC signal for diagnostic purposes and the fusion of information from different
ACC signal axes by applying parameter selection strategies based on mutual information.

The organization of this study is as follows. Section 2 outlines the proposed classification system, including
the feature extraction and selection steps. Section 3 presents the experiments and their results. Section 4 concludes
the paper with suggestions for future research.

2 Classification of ACC Signal

2.1 Dataset

The French national research project ECOTECH database [14] is a comprehensive resource used for the study
of neuromuscular dysfunction, particularly in the context of Parkinson's disease (PD). This database includes
detailed recordings of electromyographic (EMG) and accelerometer (ACC) signals from six different muscles.
The muscles typically studied in this database are selected to provide a thorough understanding of movement and
muscle activity in both healthy individuals and those with PD. In this particular research, we focused on the
biceps muscle of the ACC signal with X, Y, and Z. Data from this muscle were used to analyze movement
patterns and muscle activity in eight Parkinsonian patients and nine healthy subjects. The tibialis muscle was
chosen due to its significant role in arm movements, which are often affected in PD. Accelerometric signals,
derived from tri-axial sensors (X, Y, Z), provide precise measurements of body movements by capturing
acceleration variations across three dimensions. measure accelerations at sampling frequencies ranging from 50
Hz to 500 Hz, with resolutions of 8 to 16 bits and typical sensitivities of +2 g to £16 g. Raw recorded signals,
which may include noise artifacts caused by external vibrations, are generally filtered (e.g., using low-pass or
band-pass filters) to isolate relevant frequencies, typically between 0.1 Hz and 20 Hz. Tables 1 and 2 present a
description of the data base.



Table 1. Distribution of data in testing and training dataset.

Subjects Signal duration of ACC (second)
Data base for Control; 2.6069
training phase Control, 1.1213
Controls 1.4400
Controly 1.4744
Controls 1.1164
Data base for Controlg 1.4346
testing phase Controly 0.6530
Controlg 0.7712
Controlg 2.8571

Table 2. Distribution of data in testing and training dataset.

Subjects Signal duration of ACC (second)
Parky 0.3777
Data base for Park; 0.9132
training phase Parks 0.4866
Parky 3.9616
Parks 1.1288
Data base for Parke 0.8915
testing phase Parky; 0.4474
Parkg 0.4649

2.2 Proposed Feature Extraction Method

A robust classification system relies on effective feature extraction. In this process, each signal is initially
transformed into a sequence of overlapping windowed signals, and each of these windowed signals is then
converted into a feature vector. As a result, the ACC signal is represented as a sequence of these feature vectors.
For this study, we utilized the descriptors Discrete Wavelet Energy (DWE), Log Wavelet Energy (LWE), and
Wavelet Cepstral Coefficients (WCC) [15]. The choice of this features as descriptors is justified by their ability to
capture detailed and discriminative information from accelerometer signals. WCC combines both time and
frequency analyses, allowing for better distinction of subtle movement characteristics essential for identifying
neuromuscular dysfunctions such as those associated with Parkinson's disease. Their robustness against noise and
individual variations makes them a superior option for precise and reliable classification Figure 1 illustrates the
procedure for extracting these attributes.
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Fig. 1. block diagram illustrating the process of DWE, LWE and WCC features extraction.



2.3 Classification System

The proposed classification system comprises learning and testing phases. In the learning phase, features are
extracted and models for two classes, P and N, are constructed using the KNN method. The testing phase involves
extracting features (Discrete Wavelet Energy (DWE), Log Wavelet Energy (LWE), and Wavelet Cepstral
Coefficients (WCC)). The feature selection step in this work involves choosing the relevant features by
maximizing mutual information. This process is conducted using various feature selection strategies, such as JMI
[16], ICAP [17], CIFE [18], MRMR [19], and CMI [20]. Optimizing the KNN algorithm's performance involves
identifying the most relevant features and classifying each feature vector using a KNN classifier. Subsequently,
a voting rule is applied to classify sequences of feature vectors from the test database to determine the
predominant class. The ACC signal database used originates from the French national project ECOTECH [14]
and includes signals collected from multiple subjects, including 9 healthy individuals and 8 subjects with
Parkinson's disease.
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Fig. 2. Flowchart of the proposed automated classification system.

The classification performance of the ACC signal classification systems is evaluated using two metrics: the
classification rate of signals (CRs) and the averaged accuracy of vectors (CRv).

The CRv is calculated by concatenating all signals and computing the ratio of correct decisions to the total
number of input feature vectors, as defined by:

CRu(%) = number of recognised signals 1
vire) = total number of tested signals )

Additionally, the classification rate of signals (CRs) is determined using the majority voting rule, which assigns
a class label based on the highest number of votes. This voting rule is applied separately for ACC signals. The
CRs metric represents the ratio of correctly classified signals to the total number of signals and is defined as:

CRs — the number of correct decisions made for the signals )
5= total number of signals @

2.4 Features Selection

In large dimensional problems, dimensionality reduction of the number of features is often a necessity. The
reduction can be achieved either by transforming the features and by selecting them. The solution to this problem
consists of two methods. The first method is transforming the features of an initial set F of i features
{Ni, Ny, ..., N;} in a low dimensional subset of k features. But this approach requires calculating all the features



as well as choosing a suitable criterion for defining transformation, which is not a straightforward task. The
second method consists in selecting the k most relevant features {NP1 ,Np, , .., Np, } from the set M which form
the subset S,,,. This approach will be preferred; because it needs only the k selected features to be computed for
the classification task in the testing phase. In opposite to the previous approach.

The feature selection procedure uses an information measure of a subset of features useful for a classification
task. S, is an optimal subset of features if its information is maximum for the classification task . Mutual
Information (M) is often used as a measure of the quantity of information because of its ability of assessing the
nonlinear statistical dependency between variables. So, the subset S, is chosen in such a way that the Ml
between S, and the class label C is maximized:

Sopt = arg r&a}&([(C;S) ?3)
However, the number of combinations of features for exhaustively constructing the sets § to be tested rapidly

becomes prohibitive when the size of § grows. To circumvent this problem, ‘‘greedy forward” search strategy
can be employed. The search is a one-by-one selection procedure that gives at each step j the best feature ijfrom

the unselected features set. This new selected feature Np; grows the already selected subset S;_, by appending
|t as 5] = Spj U ‘Sj—l:

N, =arg Nier;iil);j_l[l (C;N, s;21)] &)
Since I(C; N;, Sj—1) = 1(C; Sj_1) + 1(C; N;{ S;_1) [21], (4) can be reduced to:
N, =arg, max [1(C:MA 5] ©

Most of the algorithms propose a simplification of (4) following different strategies like MIFS, MRMR, JMI,
CIFE, CMIM, MIM, and ICAP ([22];[23] [24]. The derivation of (4) is given below, for three selected strategies.

= ICAP (Interaction Capping) [17]

Np, = arg max [1(C;N) - Z{;ll max[1(C; N;; Nsk) ,0]] (6)

iEF— 51_1

= CIFE (Conditional Infomax Feature Extraction) [18]
j—1
ij =arg Nierlr:l_c%cj_l[l(C;Ni) Z{(=1I(C;Ni;Nk)] (7

= JMI (Joint Mutual Information) [16]

Np. = ar
Pj gNl

N Lyl "N
max 1N = 532G N Vo) ®)

=  CMIM (Conditional Mutual Information Maximization) [20]

N =arg max [mier}s_[I(C;Ni\Npk)]- 9

Pj+1 NiE?—Sj Npk

e MIFS (Mutual Information Feature Selection) [25]



N,, =arg .nax 1(C; N;) (10)

iET\'Sj—l
=  MIM (Mutual Information Maximization) [20]

N,

p;, =arg Nrélea_%j[IM(C; Np] (11)

=  MRMR (Maximum-Relevance Minimum Redundancy) [19]

1 = (12)
Ny, =arg max (I(C;N)) —jij:I(Ni;Npk)
=1

i{EF— 'Sj—l

3 Experimental Results
3.1  Experiments

In this section, we outline the various experiments we conducted to evaluate the performance of our algorithm
using features extracted from the ACC signals of the ECOTECH dataset [14] . These experiments utilized a KNN
classifier. The tests included the following:

- Explored the optimal feature configuration by evaluating different feature types (DWE, LWE, and WCC)
based on the classification rate for ACC signals from various channels (X, Y, and Z)

- Examined the optimal signal channel by comparing the classification rates of ACC signals across the X,
Y, and Z axes.

- Applied a mutual information (MI)-based feature selection method using multiple strategies MIFS, ICAP,
JMI, CIFE, MIM, MRMR, and CMIM to identify the optimal signal features.

- Used the KNN classifier to validate the relevance of the selected features at iteration j.

3.2 Results and Discussion

Comparative Study between Different Features Type

We carried out comparative experiments with respect to different parameters (DWE, LWE and WCC) for
different modality ACCy, ACCy , ACC, and ACCyy, to investigate the influence of these factors on the
classification performance. For these descriptors, we consider the mother wavelet Coif 5 for a decomposition
level Lgecomp = 4 for analysis frame duration equal to 132.91ms as reference features and using the KNN
classifier (taking the optimal K ).

ACCy signal

The results of a classification task, highlight the critical importance of feature. Table 3 compares the CRv
and CRs achieved for an ACCy signal using different features. This table suggests that using five-dimensional
feature vectors derived from WLE or WCC features enables achieving an optimal CRv of 91.62 % and CRs of
100% with optimal number of nearest neighbors K equal to 22. This indicates that models employing LWE or
WCC features outperform those using other wavelet-based features (such as DWE) due to their ability to analyze



frequency content and temporal dynamics. This finding underscores the importance of carefully selecting features
to optimize classification performance.

Table 3. Comparison of CRv (%) and CRs(%) for different feature types with optimal number of nearest neighbors
K using Coiflets (coif 5) at level 4 [15] for the modality ACCy.

ACCy DWE LWE WCC
Koptimal 42 22 22
CR(%) 56.88 (5, 91.62s) 91.625)

ACCy signal

Table 4 presents the classification outcomes for the ACCy signal using different feature types: DWE, LWE,
and WCC. The table underscores the importance of feature optimization in achieving optimal classification
performance. Specifically, LWE and WCC features deliver superior performance, achieving a validation CRv of
96.93% with an optimal number of nearest neighbors (K ,p¢imar) €qual to 5. In contrast, DWE features result in
a considerably lower CRv of 67.25% at k=6 clusters. Moreover, the CRs is uniformly 100% for all three feature
types. These results highlight the impact of feature selection on classification accuracy and suggest that LWE
and WCC offer a more effective approach compared to DWE.

Table 4. Comparison of CRv (%) and CRs(%) for different feature types with optimal number of nearest neighbors K
using Coiflets (coif 5) at level 4 [15] for the modality ACCy.

ACCy DWE LWE wcc
Koptimal 6 S S
CRv(%) 67.25 (s 96.93 (s 96.93 (5
CRS(%) 100 (5) 100 (5) 100 (5)

ACCy signal

As in the previous cases, Table 5 presents the CRv and CRs for the ACC;signal using three different feature
types: DWE, LWE, and WCC. For DWE, a CRv of 61.31% and a CRs of 100% are achieved at k = 10, whereas
both LWE and WCC obtain an impressive CRv of 94.28% and a perfect CRs of 100% when k is set to 39. These

results further confirm the superior performance of LWE and WCC over DWE for the classification of the
ACCysignal.

Table 5. Comparison of CRv (%) and of CRs(%) for different feature types with optimal number of nearest neighbors K
using Coiflets (coif 5) at level 4 [15] for the modality ACC3.

ACC, DWE LWE wcC
Koptimal 10 39 39
CRV(%) 61.31 (5 94285,  94.28(s
CRs(%) 100 (s 100 (s 100 (5)

ACCyy 5 signal

In this case, all three signals are collected and analyzed. Table 6 presents the classification results for the
ACCyy, (accelerometer data for X, Y, and Z) signal using three different feature types: DWE, LWE, and WCC.
The optimal number of nearest neighbors Koy ¢imqis 5 for DWE, whereas LWE and WCC both achieve optimal
performance with K set to 27. In terms of CRv and CRs, DWE reaches 62.81% at k=5, while LWE and WCC
significantly outperform it, both achieving identical CRv values of 94.82%. This result is obtained when K is set
to 27. Moreover, every feature type consistently achieves a CRs of 100%.



These findings highlight the superior effectiveness of LWE and WCC over DWE for the ACCyysignal in
this classification task

Table 6. Comparison of CRv (%) and CR s(%) for different feature types with optimal number of nearest neighbors K
using Coiflets (coif 5) at level 4 [15] for the modality ACCxy.

ACCyy; DWE LWE wcc
Kor)timal 5 27 27

CRV(%) 62.81;5) 94.82(;5) 94.82(;5)
CRS(%) 100 (15) 100 (15) 100 (15)

In the next sections, the value of nearest neighbor’s K will be set to 27 be chosen.

Feature selection

This section addresses the challenge of feature selection for the classification task, aiming to identify the most
relevant features. Features are deemed relevant if they effectively differentiate between the two classes, normal
and Parkinson. Various selection algorithms employed in this experiment differ in terms of the extent to which
they consider redundancy between a subset of already selected variables and those yet to be chosen. The
algorithms under consideration include MRMR, JMI, CMIM, ICAP, MIFS or CIFE [22]. These algorithms are
grounded in the principle of maximizing mutual information, as described in detail in Section 2.4.

In this section, we consider two criteria to determine the optimal number of relevant features after the selection
process. For the first criterion (CRT1), the ideal number is the dimension of the smallest subset of selected
features that achieves a classification rate (CR) equal to or higher than the CR of the full feature set. For the
second criterion (CRT2), the ideal number is the dimension of the subset of features that yields the highest CR.

The classification results using different feature selection strategies and the two stopping criteria (CRT1 and
CRT2) are presented in Table 7. The key observations from these results are as follows:

e Under Criterion 1 (CR > CR_end):

o The JMI strategy achieves a CRv of 94.89% using a subset of 3 features, which is comparable to the
MRMRR strategy.

o The CIFE strategy, however, achieves the highest CRv of 98.91% while selecting only 2 features, indicating
the most efficient dimensionality reduction.

o The ICAP method selects a slightly larger subset (4 features) but still achieves a high CRv of 98.56%.

e Under Criterion 2 (CR = max(CR)):

o The CIFE and ICAP strategies both achieve the highest CRv, but CIFE requires only 2 features with CRv of
98.91%, making it the most effective for dimensionality reduction.

o The MIFS, CMIM, and MIM methods all achieve a CRv of 98.09% but differ in the number of selected
features, with MIFS selecting the largest subset (7 features).

o The MRMR strategy consistently selects the largest subset of features under both criteria.

Table 7. CR and number of relevant features by using MRMR,CMIM, CIFE, JMI,MIFS and ICAP strategies with selection
criteria CRT1 and CRT2 [24].

Criterion 1 Criterion 2
CR>=CR(end) CR==max(CR)




Number of  CRv (%) CRs(%) Number of CRv (%) CRs(%)

relevant relevant

features features
MRMR 3 94.89 100 5 97.75 100
CMIM 2 96.66 100 5 98.09 100
JMI 3 94.89 100 5 97.00 100
MIFS 2 97.27 100 7 98.09 100
MIM 2 96.66 100 4 98.09 100
ICAP 4 98.56 100 4 98.56 100
CIFE 2 98.91 100 2 98.91 100

More information about the first ten selected features, as determined by all feature selection strategies, is
shown in Table 8.

Table 8. The first ten selected features obtained for different Ml strategies for the WCC descriptor of the

three modalities ACCyy .

Subset of selected features

MRMR  Accly ©;acce@acci;accvs®; acclye;accye®;
ACCHED acc i accie; Acc e acc e,
CMIM  AccC;Acce; accie?;accie®; acciesacc;acc s Acc e acc s
;;ACC)%CC);
IMI 4ccie;acciec;acc e accie;accieO;accts?; acc e acclly s accie®
LACCYSCO;
MIFS  ACC O5ACCYy 5 AcC i O acciis? accie;acce @ accis ;Accly O Acc s,
ACCHED;
MIM  4ccly;Accye;acci®acciie?;Accn @ accii acc i O Acc s,
ACCHD ;s accse
ICPAP Accly“;accve@;accil @ acciye;accts?;acc i acce @ accee;
ACCSEO Ao
CIFE

ACCHE a0 a0 Oacc e a0l ; acc O Acce O acc e,
(wcece) . (wcce)
ACCHD ;s accts

The table's results indicate that the ACC, feature is more relevant compared to the others. Through this
experiment, we notice that the selected features of the ACC are of great importance in this task. Notably, all

methods consistently identified the same initial feature ACCy.q

(wco)

Figure 3 illustrates how the classification rate varies with the number of selected features, evaluated using
seven feature selection strategies: CMIM, JMI, ICAP, CIFE, MRMR, MIM, and MIFS. The analysis reveals that
the best performance a CRv of 98.91% and a CRs of 100% is achieved with only two features selected by the
CIFE strategy. This feature selection process effectively reduces the number of features needed for classification.
Additionally, the graphs highlight the occurrence of the peaking phenomenon.
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Fig. 3 CRv(%) as a function of the number of selected features with the five feature selection strategies.

4 Conclusions

The classification and diagnosis of diseases affecting muscle activity has important clinical application. The
present paper describes new approach to deal with Parkinson’s disease classification based on Accelerometer
(ACCy; ACCy; ACC4;ACCyy5) signal. The method employs a k-NN classifier combined with a voting role. The
proposed methodology is tested on a subset of (ACCyy ;) signals obtained from the French national research
project ECOTECH, dataset.

The proposed method of feature extraction of the signals has been applied on DWE, LWE, WCC descriptors. The
results firstly illustrate the significance of the LWE and WCC descriptors in comparison to other descriptors

whether the type of the signals.

To reduce dimensionality, we applied several feature selection strategies based on the M1 maximization criterion
to the feature set. These strategies effectively reduced the number of features while achieving higher classification
rate values than those obtained with the full feature set. Results indicate that the CIFE strategy yielded the highest
accuracy of vectors of 98.91% with 100% of signals classification rate (CRs) with the fewest features selected

(two features) using the Conditional Infomax Feature Extraction filter selection strategy.
Additionally, our findings reveal that features from the ACC%CC). modality predominantly contribute to
classification. Across all results, the first relevant feature consistently came from the ACC, modality, regardless

of the selection strategy or descriptor type.
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