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Abstract

In this work, we addressed the problem of Auto-
matic Short Answer Grading (ASAG). The task
involves assigning a grade to a student’s answer
by comparing it against a model answer for a
given question. Previous works in this domain
mostly used rule-based and machine learning
methods to tackle the problem, wherein the
creation of handcrafted features and the use
of neural networks have been the most com-
mon practice. Different variations of syntactic
and semantic similarity between a student and
model answer pair have been used as features
in earlier works. We hypothesize that the ex-
tent of alignment between the graph representa-
tions of a student and model answer is a good
indicator of their relative similarity. In this di-
rection, we propose an end-to-end ASAG sys-
tem that models the alignment as co-attention
between the nodes in the dependency graphs
corresponding to an answer pair. We leveraged
the representational power of BERT and Graph
Convolutional Network (GCN) along with a
co-attention mechanism to capture the intrinsic
similarities between student answers and refer-
ence answers. Our proposed method surpasses
most of the existing state-of-the-art results on
the SemEval-2013 SciEntsBank and BEETLE
datasets.

1 Introduction

Quick evaluation and grading along with feedback
from the instructor can help students to work upon
their mistakes and thus to move up on the learning
curve. This becomes an exhausting task as evalua-
tor has to manual screen through each of the answer
and then score it. Also, due to differences in learn-
ing strategies, cognitive capacities, and knowledge
levels, students may convey the same response in
multiple ways, which makes it more difficult for the
evaluator. Further, manual grading of the responses
can be erroneous and may inculcate instructor bias.
One way to mitigate these myriad of challenges is
to automatically grade the student answers. Though

natural language and free-text based responses are
very difficult to evaluate, recent advancements in
the domain of Natural Language Processing (NLP)
has made this grading process feasible.

Automatic Short Answer Grading (ASAG) is
viewed as a classification or regression task in
most of the existing literature. The research
in this domain gained momentum with compre-
hensive benchmark dataset, namely, SemEval-
2013 (Dzikovska et al., 2013). The existing ap-
proaches rely on traditional machine learning tech-
niques with handcrafted features (Mohler et al.,
2011). Several handcrafted features have been em-
ployed in the earlier works in the form of POS
tag, n-gram features, context overlap features (Heil-
man and Madnani, 2013) (Ott et al., 2013). Subse-
quently, deep learning techniques like Long Short
Term Memory Networks aka LSTMs and Convolu-
tional Neural Networks aka CNNs became preva-
lent (Alikaniotis et al., 2016) (Hassan et al., 2018)
(Huang et al., 2018) (Kumar et al., 2017) (Riordan
et al., 2017) (Yang et al., 2018). Both the lines
of research indicate the reliance of the models on
the measure of similarity between the input student
answer and the corresponding model or reference
answer. The representational ability of the deep
learning models have been shown to be more effec-
tive (Peng et al., 2018).

Pre-trained Language Models (PLMs) have been
extremely successful in crossing benchmarks on
multiple NLP sub-tasks by fine-tuning them with
task-based or domain specific data. Lun et al.
(2020); Ghavidel. et al. (2020) in their papers
showed that the transformer based models per-
form extremely well on the benchmark dataset
for SemEval short answer grading. Sung et al.
(2019) showed that task-specific fine-tuning on en-
hanced PLMs achieve much better performance
for ASAG task. Camus and Filighera (2020) in
their paper demonstrated that large Transformer-
based pre-trained models achieve state-of-the-art



results in ASAG. Ndukwe et al. (2020) utilised
Sentence-BERT, to perform automatic grading of
three variations of short answer questions. Re-
cently, the use of Graph Convolutional Networks
(GCNs) in NLP tasks has gained attention and there
have been promising results and crossing of bench-
marks in many NLP based sub-tasks (Marcheg-
giani and Titov, 2017), (Sahu et al., 2019), (Zhang
et al., 2018). Zhang et al. (2018) proposed a one-
of-a-kind model made up of: a CNN-based in-
stance encoder, a graph convolutional network and
a knowledge-aware attention for ASAG. Very re-
cently, relation networks (Li et al., 2021) have been
used to capture three-way relation between ques-
tions, reference answers, and student answers.
While the existing works leveraged textual simi-
larity between a student answer (SA) and a refer-
ence answer (RA), we hypothesize that their simi-
larity can be captured in both textual (words) and
structural (dependency graph) domain. In earlier
works, the representations of SA and RA have been
obtained using independent components (e.g., two
parallel LSTMs) of the architecture. We challenge
this view by considering an architecture that learns
joint representation of SA and RA. In this work, we
present a novel approach for automatic evaluation
of student answers by employing a co-attention
based Graph Neural Network architecture to jointly
learn representation of the SA and the MA from
their dependency graph. Following are the key con-
tributions of our paper:
1. The automated short answer grading problem
has been modelled as a graph representation learn-
ing problem.
2. A joint feature learning method has been con-
sidered using a co-attention based graph neural
network architecture that captures both textual and
structural similarity of a given answer pair.

2 Proposed Approach

Syntactic structures are useful for cross-domain
generalisation of NLP models as has been found in
literature and previous study (Wang et al., 2017).
Thus, encoding structural information into the
model could make the model more robust. Fol-
lowing the above lines and inspired by (He et al.,
2020)(Lu et al., 2016) we built an improvised ar-
chitecture which could effectively capture syntac-
tics and semantics of the answer pair along with
added co-attention to effectively represent the word-
alignments between the pair of student answer and

reference answer.

Given a pair (SA, RA), we obtain the depen-
dency graphs of each sentence by using a neural
parser. Word level contextual representation of the
raw SA and RA pairs are obtained using BERT
or Bi-LSTM models. The syntactic dependency
trees thus obtained have words as the nodes with
their corresponding embedding representation as
node features. To facilitate joint representation, the
SA and RA graphs are combined by adding align-
ment edges between all pairs of nodes, one from
the SA, other from the RA. Further, for each depen-
dency edge, a reverse edge is added and for each
node a self loop is added. The resulted graph is
then passed through a sequence of GCN layers, fol-
lowed by co-attention matching layer that captures
relative attention between word pairs from SA and
RA. The co-attention pooled output representations
SA and RA are then passed through output softmax
layer for the final prediction. The schematics of the
architecture is presented in Fig. 1.

GCN module

Graph Convolutional Networks (GCNs) effi-
ciently use dependency paths to transform and
transmit path information, and updates node em-
beddings by effectively combining the transmitted
information. Consecutive such p GCN transforma-
tions cause the information to propagate through
the neighborhood nodes of order p.

Here, the feature vector of node ¢ is updated at
the p™ layer by:

R (P = g Z o p P L p®Y (1)
ueN (t)

where g(.) is ReLU activation function and N (.) is
neighbourhood function.
Co-attention Layer

If S and R symbols are used to denote the node
representations of dependency graph for SA and
RA respectively in the GCN output. Then an affin-
ity matrix reflecting the contingent alignment of
the words in SA and that of RA is calculated as
follows

A = tanh(STW.R) )

This affinity matrix is then further used to calcu-
late the directional co-attention maps from SA to
RA and reverse:

Mg = tanh(WaS + AT (W5R))  (3)

Mp =tanh(WpR + AT (WaS)) 4



Dependency
Parser

Student — i
Answer | M 2 e AN L s
(SA) A— [E— %
E— o
Qo
> >0
i &3
] s > - <
Model Ul A : ¥ e
Answer | —» > “' : 1 ' 1 R
(MA) | — P — J Co-attention  Softmax
. A Layer
Contextual GCN
Representation Layers

Figure 1: Co-attention coupled GCN architecture for ASAG. S and ‘R represent the matrix representations of GCN

node embedding of SA and RA respectively.

The attention weights corresponding to SA and RA
are computed as follows:

ag = softmax(ayMg) ®)
ap = softmax(agMpg) (6)
Weight  parameters are denoted by

Wa,Wp,aa,ap and as and ap store the
attention weights of words in SA and RA
respective;y. Finally, we calculate the vector
representations of SA or RA as:

hsa = Z aé”)S(”), hra = Z ag)R(m)

wnpESA wmERA
(7)
here ' entry in « is denoted by &™), n*" column
in X is denoted by X' (™).
Output Softmax Layer

The final classification output is obtained by
concatenating vector representations of the input
answer pair with their element-wise difference
and multiplication as [hsa, hra, hsa ® hra,
hsa — hral, which is then forwarded to a linear
layer with softmax activation. The final model is
trained using a cross-entropy loss.

3 Implementation Details

The PyTorch implementations of BERT-base and
GCN were leveraged in our experiments. The
BERT models were initialized with the same pre-
trained weights and their baselines were optimised
using the Adam optimizer (Loshchilov and Hut-
ter (2018)). The BERT embedding size and GCN
encoder output dimension were considered to be
768. The number of GCN layers was set to 5
with dropout of 0.2. The size of the directional co-
attention maps calculated in the co-attention layer

has been set to 512. The learning rate was set to
5 x 1073 for the experiments on both SciEntsBank
and BEETLE. We train our models on SciEnts-
Bank and BEETLE datasets. Following standard,
evaluation instances in SciEntsBank are segmented
into three categories, namely , unseen aswer (UA),
unseen question (UQ) and unseen domain (UD)
whereas those in BEETLE are segmented into two
: UA and UQ. The test set has been so designed
to test the efficacy and generalization ability of the
trained model.

4 Results and Discussions

The SemEval-2013 BEETLE and SciEntsBank
datasets (Dzikovska et al., 2013) have been used
in this study. We report the results of 2-way, 3-
way and 5-way classification tasks related to the
SemEval-13 dataset (Dzikovska et al., 2013). Ac-
curacy and Macro F1 (M-F1) are used as the evalu-
ation metrics. As baselines, representatives of dif-
ferent appraoches towards ASAGA have been con-
sidered: 1) Lexical Overlap (LO) (Dzikovska et al.,
2013), 2) ETS5 (Heilman and Madnani, 2013), 3)
CoMeT (Ott et al., 2013), 4) TF+SF (handcrafted
feature + sentence embedding) (Saha et al., 2018),
5) LR+BERT (logistic regression with pre-trained
BERT) (Sung et al., 2019), 6) SFRN+(Relation net-
work with BERT encoder) (Li et al., 2021). The
models proposed by us are named as GASAG*.
The ‘+’ symbol in the model name indicates avail-
ability of the alignment linkage between student
answer and model answer dependency graphs. The
performance values are presented in Table 1. The
following observations can be made:

1) Across all the classification levels (2-way, 3-
way and 5-way), our proposed method has outper-
formed the baselines with some exceptions. Out of



ASAG

Models Acc

UA UQ UD UA UQ UD|UA UQ

SciEntsBank

BEETLE
Acc M-F1
UA UQ

M-F1

2-WAY CLASSIFICATION PERFORMANCE

Lexical Overlap(LO) 66 66 67
7

61 63 65 | 79 75 718 72

ETS, 2 71 69 70 68 68 81 74 80 72
CoMeT 77 60 67 76 57 67 83 70 83 69
TF+SF 79 70 71 78 68 70 - - - -

LR+BERT 70 59 57 70 57 53 82 67 82 65
SFRN+ 78 64 67 70 64 67 89 70 | 89 70
GASAG-LSTM 61 64 55 60 64 47 67 63 67 61
GASAG-BERT 74 71 67 73 70 66 | 83 73 83 70
GASAG-LSTM+ 64 63 60 64 63 57 75 67 74 62
GASAG-BERT+ 78 73 71 77 | 72 71 82 75 82 74

3-WAY CLASSIFICATION PERFORMANCE

Lexical Overlap (LO) 55 54 51

40 39 41 60 51 55 47

ETS, 72 62 62 64 42 42 | 63 55 59 52
CoMeT 71 54 57 64 38 40 | 73 51 71 46
TF+SF 71 65 64 65 48 45 - - - -
LR+BERT 67 52 54 60 42 42 | 73 60 64 52
SFRN+ 73 56 58 65 49 47 78 63 67 55
GASAG-LSTM 45 45 39 43 40 33 72 62 62 57
GASAG-BERT 69 58 55 67 56 53 8 76 76 | 68
GASAG-LSTM+ 53 46 42 50 39 37 77 72 64 58
GASAG-BERT+ 71 58 56 |70 56 54 | 88 72 | 77 62

5-WAY CLASSIFICATION PERFORMANCE

Lexical Overlap (LO) 43 41 41

37 32 31 51 48 42 41

ETS, 62 66 63 S8 27 39 | 71 62 61 55
CoMeT 60 43 42 55 20 15 68 56 48 30
TF+SF 62 50 50 47 31 35 - - - -

LR+BERT 61 42 47 45 30 25 69 57 55 51
SFRN+ 69 47 51 47 35 35 75 56 60 55
GASAG-LSTM 53 39 40 39 29 26 | 60 61 42 43
GASAG-BERT 67 51 48 52 4 42 | 76 64 70 63
GASAG-LSTM+ 54 42 42 42 31 35 73 66 64 60
GASAG-BERT+ 68 53 50 53 48 54 | 77 69 71 66

Table 1: Performance comparison between the proposed model (GASAG*) and the state-of-art ASAG models. The
shaded cells along with boldface represent best performance values.

11 combinations (test item type and performance
measure), our proposed method has emerged as
winner in 7 cases for 2-way, in 8 cases for 3-way
and in 6 cases for the 5-way task.

2) With some minor exceptions, establishing align-
ment between the dependency graphs has helped in
improving the performance of the grading model
irrespective of the context representation method
(LSTM or BERT). Thus inclusion of co-attention
helps in improving the performance of the grading
model in general. This validates our hypothesis that
joint representation learning of the answer graphs
via adding alignment edges helps in developing
better grading model.

3) It is also observed that choice of BERT contex-
tual representation over LSTM encoder improves
the performance by considerable margin in major-
ity of the cases.

5 Conclusion and Limitation

In this paper, we aimed at exploring the effect
of joint representation learning of a given pair
of answer graphs for the ASAG task. We have
used graph co-attention network to facilitate the
proposed joint representation learning. The co-
attention mechanism has been implemented on top
of GCN-based transformation of aligned depen-
dency graphs corresponding to an input answer
pair. It is observed the the inclusion of co-attention
has significant positive impact in the performance
of the grading model.

As compared to traditional text similarity-based
measures, our method relies on dependency graphs
of the answer sentences. This limits the applicabil-
ity of our method for the languages for which de-
pendency parser has not been developed. In many
cases, the student answers are ill formed syntac-
tically. This may lead to erroneous dependency
graphs and consequently erroneous grading.



References

Dimitrios Alikaniotis, Helen Yannakoudakis, and Marek
Rei. 2016. Automatic Text Scoring Using Neural
Networks. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 715725, Berlin,
Germany. Association for Computational Linguis-
tics.

Leon Camus and Anna Filighera. 2020. Investigat-
ing transformers for automatic short answer grading.
In Artificial Intelligence in Education, pages 43-48,
Cham. Springer International Publishing.

Mpyroslava O. Dzikovska, Rodney D. Nielsen, Chris
Brew, Claudia Leacock, Danilo Giampiccolo, Luisa
Bentivogli, Peter Clark, Ido Dagan, and Hoa Trang
Dang. 2013. Semeval-2013 task 7: The joint stu-
dent response analysis and 8th recognizing tex-
tual entailment challenge. In Proceedings of the
7th International Workshop on Semantic Evalua-
tion, SemEval @ NAACL-HLT 2013, Atlanta, Georgia,
USA, June 14-15, 2013, pages 263—-274. The Associ-
ation for Computer Linguistics.

Hadi Ghavidel., Amal Zouaq., and Michel Desmarais.
2020. Using bert and xInet for the automatic short
answer grading task. In Proceedings of the 12th In-
ternational Conference on Computer Supported Edu-
cation - Volume 1: CSEDU,, pages 58—67. INSTICC,
SciTePress.

Sarah Hassan, Aly A. Fahmy, and Mohammad El-
Ramly. 2018. Automatic Short Answer Scoring
based on Paragraph Embeddings. International Jour-
nal of Advanced Computer Science and Applications,
9(10). Publisher: The Science and Information Orga-
nization.

Qi He, Han Wang, and Yue Zhang. 2020. Enhanc-
ing Generalization in Natural Language Inference by
Syntax. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2020, pages 4973-4978,
Online. Association for Computational Linguistics.

Michael Heilman and Nitin Madnani. 2013. ETS: Do-
main adaptation and stacking for short answer scor-
ing. In Second Joint Conference on Lexical and Com-
putational Semantics (*SEM), Volume 2: Proceed-
ings of the Seventh International Workshop on Se-
mantic Evaluation (SemEval 2013), pages 275-279,
Atlanta, Georgia, USA. Association for Computa-
tional Linguistics.

Yuwei Huang, Xi Yang, Fuzhen Zhuang, Lishan Zhang,
and Shengquan Yu. 2018. Automatic Chinese Read-
ing Comprehension Grading by LSTM with Knowl-
edge Adaptation. In Advances in Knowledge Dis-
covery and Data Mining, pages 118—129, Cham.
Springer International Publishing.

Sachin Kumar, Soumen Chakrabarti, and Shourya
Roy. 2017. Earth Mover’s Distance Pooling over
Siamese LSTMs for Automatic Short Answer Grad-
ing. In Proceedings of the Twenty-Sixth International

Joint Conference on Artificial Intelligence, IJCAI-17,
pages 2046-2052.

Zhaohui Li, Yajur Tomar, and Rebecca J. Passonneau.
2021. A semantic feature-wise transformation re-
lation network for automatic short answer grading.
In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pages
6030-6040, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Ilya Loshchilov and Frank Hutter. 2018. Fixing weight
decay regularization in adam.

Jiasen Lu, Jianwei Yang, Dhruv Batra, and Devi Parikh.
2016. Hierarchical Question-Image Co-Attention for
Visual Question Answering. CoRR, abs/1606.00061.
ArXiv: 1606.00061.

Jiaqi Lun, Jia Zhu, Yong Tang, and Min Yang. 2020.
Multiple data augmentation strategies for improv-
ing performance on automatic short answer scoring.
Proceedings of the AAAI Conference on Artificial
Intelligence, 34(09):13389-13396.

Diego Marcheggiani and Ivan Titov. 2017. Encoding
Sentences with Graph Convolutional Networks for
Semantic Role Labeling. CoRR, abs/1703.04826.
ArXiv: 1703.04826.

Michael Mohler, Razvan Bunescu, and Rada Mihalcea.
2011. Learning to Grade Short Answer Questions
using Semantic Similarity Measures and Dependency
Graph Alignments. In Proceedings of the 49th An-
nual Meeting of the Association for Computational
Linguistics: Human Language Technologies, pages
752-762, Portland, Oregon, USA. Association for
Computational Linguistics.

Ifeanyi G. Ndukwe, Chukwudi E. Amadi, Larian M.
Nkomo, and Ben K. Daniel. 2020. Automatic grad-
ing system using sentence-bert network. In Artifi-
cial Intelligence in Education, pages 224-227, Cham.
Springer International Publishing.

Niels Ott, Ramon Ziai, Michael Hahn, and Detmar
Meurers. 2013. CoMeT: Integrating different lev-
els of linguistic modeling for meaning assessment.
In Second Joint Conference on Lexical and Compu-
tational Semantics (*SEM), Volume 2: Proceedings
of the Seventh International Workshop on Semantic
Evaluation (SemEval 2013), pages 608—616, Atlanta,
Georgia, USA. Association for Computational Lin-
guistics.

Hao Peng, Jianxin Li, Yu He, Yaopeng Liu, Mengjiao
Bao, Lihong Wang, Yangqiu Song, and Qiang Yang.
2018. Large-Scale Hierarchical Text Classification
with Recursively Regularized Deep Graph-CNN. In
Proceedings of the 2018 World Wide Web Confer-
ence, WWW 18, pages 1063—-1072, Republic and
Canton of Geneva, CHE. International World Wide
Web Conferences Steering Committee. Event-place:
Lyon, France.


https://doi.org/10.18653/v1/P16-1068
https://doi.org/10.18653/v1/P16-1068
https://aclanthology.org/S13-2045/
https://aclanthology.org/S13-2045/
https://aclanthology.org/S13-2045/
https://doi.org/10.5220/0009422400580067
https://doi.org/10.5220/0009422400580067
https://doi.org/10.14569/IJACSA.2018.091048
https://doi.org/10.14569/IJACSA.2018.091048
https://doi.org/10.18653/v1/2020.findings-emnlp.447
https://doi.org/10.18653/v1/2020.findings-emnlp.447
https://doi.org/10.18653/v1/2020.findings-emnlp.447
https://aclanthology.org/S13-2046
https://aclanthology.org/S13-2046
https://aclanthology.org/S13-2046
https://doi.org/10.24963/ijcai.2017/284
https://doi.org/10.24963/ijcai.2017/284
https://doi.org/10.24963/ijcai.2017/284
https://doi.org/10.18653/v1/2021.emnlp-main.487
https://doi.org/10.18653/v1/2021.emnlp-main.487
https://openreview.net/forum?id=rk6qdGgCZ
https://openreview.net/forum?id=rk6qdGgCZ
http://arxiv.org/abs/1606.00061
http://arxiv.org/abs/1606.00061
https://doi.org/10.1609/aaai.v34i09.7062
https://doi.org/10.1609/aaai.v34i09.7062
http://arxiv.org/abs/1703.04826
http://arxiv.org/abs/1703.04826
http://arxiv.org/abs/1703.04826
https://aclanthology.org/P11-1076
https://aclanthology.org/P11-1076
https://aclanthology.org/P11-1076
https://aclanthology.org/S13-2102
https://aclanthology.org/S13-2102
https://doi.org/10.1145/3178876.3186005
https://doi.org/10.1145/3178876.3186005

Brian Riordan, Andrea Horbach, Aoife Cahill, Torsten
Zesch, and Chong Min Lee. 2017. Investigating neu-

ral architectures for short answer scoring. pages
159-168.

Swarnadeep Saha, Tejas I. Dhamecha, Smit Marvaniya,
Renuka Sindhgatta, and Bikram Sengupta. 2018.
Sentence level or token level features for automatic
short answer grading?: Use both. In Artificial Intelli-
gence in Education, pages 503-517, Cham. Springer
International Publishing.

Sunil Kumar Sahu, Fenia Christopoulou, Makoto Miwa,
and Sophia Ananiadou. 2019. Inter-sentence Rela-
tion Extraction with Document-level Graph Convo-
lutional Neural Network. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 4309-4316, Florence, Italy. Asso-
ciation for Computational Linguistics.

Chul Sung, Tejas Dhamecha, Swarnadeep Saha, Tengfei
Ma, Vinay Reddy, and Rishi Arora. 2019. Pre-
training BERT on domain resources for short answer
grading. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
6071-6075, Hong Kong, China. Association for Com-
putational Linguistics.

Liangguo Wang, Jing Jiang, Hai Leong Chieu, Chen Hui
Ong, Dandan Song, and Lejian Liao. 2017. Can
syntax help? improving an LSTM-based sentence
compression model for new domains. In Proceedings
of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 1385-1393, Vancouver, Canada. Association
for Computational Linguistics.

Xi Yang, Yuwei Huang, Fuzhen Zhuang, Lishan Zhang,
and Shengquan Yu. 2018. Automatic Chinese Short
Answer Grading with Deep Autoencoder. In Artifi-
cial Intelligence in Education, pages 399—404, Cham.
Springer International Publishing.

Yuhao Zhang, Peng Qi, and Christopher D. Manning.
2018. Graph Convolution over Pruned Dependency
Trees Improves Relation Extraction. In Proceedings
of the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 2205-2215, Brus-
sels, Belgium. Association for Computational Lin-
guistics.


https://doi.org/10.18653/v1/W17-5017
https://doi.org/10.18653/v1/W17-5017
https://doi.org/10.18653/v1/P19-1423
https://doi.org/10.18653/v1/P19-1423
https://doi.org/10.18653/v1/P19-1423
https://doi.org/10.18653/v1/D19-1628
https://doi.org/10.18653/v1/D19-1628
https://doi.org/10.18653/v1/D19-1628
https://doi.org/10.18653/v1/P17-1127
https://doi.org/10.18653/v1/P17-1127
https://doi.org/10.18653/v1/P17-1127
https://doi.org/10.18653/v1/D18-1244
https://doi.org/10.18653/v1/D18-1244

