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Abstract.  In this article, we address the exploitation of Artificial Intelligence 

properties in the field of control engineering. Our work focuses on the use of 

neuro-fuzzy networks, specifically ANFIS (Adaptive Neuro-Fuzzy Inference 

System) and STFIS, for the identification of models required to design control 

laws for a nonlinear dynamic system the inverted pendulum. 

In the first part, the ANFIS model is used as a controller in multiple structures. 

The second section presents an application of the STFIS controller on the non-

linear system. The objective of this paper is to improve the performance of the 

ANFIS and STFIS models for a system subjected to a constant disturbance. The 

proposed approach is validated through simulations carried out in the MATLAB 

environment. 

Keywords: Neuro-fuzzy, Self tuning fuzzy inference system STFIS, Adaptive 

Neuro-Fuzzy Inference System ANFIS, Nonlinear, Inverted pendulum. 

1 Introduction 

In the control of real-world dynamic systems, the availability of an accurate mathe-

matical model is essential for the design and implementation of any control structure. 

However, obtaining such a model through analytical methods is often difficult or nearly 

impossible. Even when a model is available, it is frequently affected by uncertainties 

and modeling errors. As a result, the use of Artificial Intelligence (AI) techniques for 

identifying the mathematical model becomes an absolute necessity [1]. 

A significant body of research has explored the application of AI in the control of 

nonlinear systems. 

Among AI-based approaches, neuro-fuzzy networks stand out due to their ability to 

combine the global reasoning and adaptability of fuzzy logic with the powerful learning 

and generalization capabilities of neural networks [2]. Various hybridizations of these 

two paradigms have led to the development of neuro-fuzzy systems, which are partic-

ularly well-suited for the control of complex and multivariable systems [3]. 

Several researchers have sought to leverage the strengths of neuro-fuzzy networks 

for controlling dynamic systems, especially in areas such as robotics and asynchronous 

motor control [4]. 

This work introduces a novel neuro-fuzzy technique applied to the control of non-

linear systems. We describe two neuro-fuzzy models: ANFIS (Adaptive Neuro-Fuzzy 
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Inference System) and STFIS (Self tuning fuzzy inference system). Then, we present 

the application of these models to nonlinear system control. 

The first section is dedicated to the development of the inverse neuro-fuzzy model 

(ANFIS), followed by its implementation within a control structure based on Direct 

Inverse Control. 

The second section presents the STFIS controller applied to a nonlinear system. The 

results are validated through MATLAB simulations. 

Neuro-Fuzzy 

Neuro-fuzzy is a term used to describe systems or methods that combine neural net-

works and fuzzy logic techniques [2]. These systems utilize the learning capabilities of 

neural networks along with the human-like reasoning style of fuzzy logic to address 

complex problems, particularly in areas involving uncertainty, imprecision, and incom-

plete information[4]. 

 

Adaptive Neuro-Fuzzy Inference System (ANFIS)  

The ANFIS method is an optimization technique for Takagi-Sugeno-type fuzzy in-

ference systems, proposed by Jang [5]. It is used to adjust the parameters of the system 

by combining the least squares method with the gradient descent algorithm. This ap-

proach is based on the use of multilayer networks. It is assumed that the fuzzy inference 

system has two inputs, x and y, and a single output f (see Fig. 1). 

The fuzzy rule base is expressed in the Takagi-Sugeno “if-then” format as follows: 

rule i: if x is Ai and y is Bi then 

𝑓𝑖 = 𝑝𝑖
𝑥
+ 𝑞𝑖

𝑦
+ 𝑟𝑖

 

 
 

Fig. 1. Adaptive Neuro-Fuzzy Inference System (ANFIS) 

  

The network consists of five layers, each performing a specific function (see Fig. 1): 

• Layer1: fuzzification 

Each node i in this layer is a square node that represents a membership function. 
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 ( )xUO Aii =
1

 (1) 

With x: the input of node i, Ai: the linguistic label associated with the function node. 

In other words, it is the membership function of Ai, and it specifies the degree of mem-

bership with which x satisfies it. The function is chosen in the form of: 

- bell-shaped form 

 𝑈𝐴𝑖(𝑥) =
1

1+[(
𝑥−𝑐𝑖
𝛼𝑖

)
2
]

𝑏 (2) 

Or a Gaussian function 

                                                                                                        (3) 

 

Or {𝛼𝑖, 𝑏𝑖 , 𝑐𝑖}  These are parameters that refer to the premise parameters. Their values 

change according to different representations of the membership function. 

• Layer 2: Rule Strength 

Each node multiplies the incoming signals: 

                                                         𝑤𝑖 = 𝑈𝐴𝑖(𝑥) × 𝑈𝐵𝑖(𝑥)                                      (4) 

• Layer 3: Normalization 

Each node computes the normalized firing strength: 

 𝑤𝑖 =
𝑤𝑖

𝑤1+𝑤2
, 𝑖 = 1,2(𝑥)                             (5) 

• Layer 4 – Consequent Parameters 

Each node computes the output of the rule based on the first-order Sugeno function: 

                                         𝛰𝑖
4 = 𝑤𝑖𝑓𝑖 = 𝑤𝑖(𝑝𝑖𝑥 + 𝑞𝑖𝑦 + 𝑟𝑖)                                      (6) 

• Layer 5 – Output 

A single node that sums all incoming signals to produce the final output: 

                                               𝛰𝑖
5 = ∑ 𝑤𝑖𝑖 𝑓𝑖                                                          (7) 

Inverse model.  

Although the inverse model of a system plays an important role in control theory, 

deriving its analytical form is quite laborious. Several system modeling methods have 

been presented in the literature [6]. A dynamic system can be described by equation 

(8), which relates its inputs to its outputs: 

            ( 1) ( ( ),..., ( 1), ( ),..., ( 1))y k f y k y k n u k u k m+ = − + − +                                   (8) 
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Where the system output y(k+1) depends on the previous n output values and the 

past m input values. In general, the inverse model of this system can be expressed in 

the following form (9): 

                
-1( ) ( ( 1), ( )..., ( - 1), ( -1),..., ( - ))u k f y k y k y k n u k u k m= + +

                       (9) 

Neuro-fuzzy networks can be used to develop the inverse model of the system [7]; 

however, representing the dynamic aspect of the system remains a challenge. Applying 

delays to the input layer of this type of network may offer a solution to address this 

shortcoming. 

The corresponding network is: 

 û(𝑘) = 𝑔(𝑥(𝑘), 𝑤) (10) 

The function g will be approximated by an ANFIS by adjusting its weights w. The 

network has an input vector x(k) composed of the output k+1 and past values of outputs 

and inputs, with the output being the signal û, which will be used to control the system. 

The identification of the inverse model begins with the determination of the input 

vector, namely the number of output and input delays, which is related to the system's 

order. 

ANFIS control 

As the name suggests, the inverse neuro-fuzzy model, placed in front of the system, 

is used as a controller to operate the system in open-loop mode (see Fig. 2). 

 

 

Fig. 2. Direct control by inverse model. 

The value of y(k+1) in equation (9) is replaced by the desired output r(k+1). The 

network is fed with the delayed values of u(k)and y(k) [87]. If the ANFIS model is an 

exact inverse of the system, it drives the output to follow the reference signal. 

Application of the ANFIS Control for Inverted Pendulum 

 Controlling an inverted pendulum involves applying control inputs to stabilize the 

pendulum in the vertical position. Various control strategies can be used to achieve this 

goal. below, we will apply the backstepping control for the stability of the inverted 

pendulum. 

The dynamic equation for an inverted pendulum can be described in the form of a 

second-order ordinary differential equation [9]: 
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{
  
 

  
 
𝑥̇1 = 𝑥2

𝑥̇2 =
(𝑚𝑐 +𝑚)𝑔 𝑠𝑖𝑛 𝑥1 −𝑚𝑙𝑥2

2 𝑐𝑜𝑠 𝑥1 𝑠𝑖𝑛 𝑥1

𝑙 (
4

3(𝑚𝑐 +𝑚)
− 𝑚 𝑐𝑜𝑠2 𝑥1)

+
𝑐𝑜𝑠 𝑥1

𝑙 (
4

3(𝑚𝑐 +𝑚)
−𝑚 𝑐𝑜𝑠2 𝑥1)

𝑢(𝑡) + 𝑑(𝑡)

 

                        

{
 
 

 
 𝑥̇3 = 𝑥4

𝑥̇4 =
4/3𝑚𝑙𝑥2

2 𝑠𝑖𝑛 𝑥1+𝑚𝑔 𝑐𝑜𝑠 𝑥1 𝑠𝑖𝑛 𝑥1

4/3(𝑚𝑐+𝑚)−𝑚𝑐𝑜𝑠2 𝑥1)

+
4

3.(4/3(𝑚𝑐+𝑚)−𝑚 𝑐𝑜𝑠2 𝑥1)
𝑢(𝑡) + 𝑑(𝑡)

 

  

 

 

 

 

 

 

(11) 

 

𝑥1is Angular position, 𝑥2is Angular velocity, 𝑥3 is Cart position and 𝑥4 is Cart ve-

locity, g = 9.8𝑚/𝑠2,  𝑚𝑐 is the mass of the cart and 𝑚𝑐 = 1𝑘𝑔, m is the mass of the 

pendulum and 𝑚 = 0.1𝑘𝑔, 𝑙 = 0.5𝑚" is the length of the pendulum from the centre of 

mass, u is control input, 𝑑(𝑡) is a noise. This inverted pendulum dynamic model is 

constructed using MATLAB Simulink software. 

first, we developed the inverse model of the system, and then used it in a control 

structure with and without noise. 

To generate the training and validation data, system (11) was excited by an input 

signal u(k), which is a random sequence with amplitude uniformly distributed in the 

interval [−5,5], in order to provide a rich input. 

Our ANFIS model takes as inputs {y(k), y(k−1), y(k−2)}, and uses two bell-shaped 

membership functions (2). 

The error between the two signals, the system input u(k) and the output of the inverse 

ANFIS û (k) is shown in Fig. 3, along with a cost value of 10−3 . 

 

Fig. 3. Prediction error of the inverse model. 
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For the application of the inverse model in a direct control scheme, we tested the model 

using a random reference signal yd 

The error between the reference signal yd and the output of the system controlled by 

the inverse model is shown in Fig. 4.  We observe that the error is minimal. 

 

 

Fig. 4. Tracking error in direct control based on the inverse model (reference signal yd). 

Self-Tuning Fuzzy Inference System (STFIS) 

The Self-Tuning Fuzzy Inference System (STFIS) described here follows a struc-

ture similar to a zero-order Takagi-Sugeno fuzzy inference system. Let's break down 

the system's architecture based on the provided description[4]: 

1. Input Layer (Layer 1): This layer receives the inputs to the system. Inputs could 

represent variables or features relevant to the problem being addressed. 

2. Fuzzification Layer (Layer 2):  The second layer calculates the degrees of mem-

bership of the inputs to their respective fuzzy subsets. Each input is associated with 

fuzzy sets defined by membership functions. The outputs of this layer represent the 

degree to which the inputs belong to each fuzzy set. 

 The network weights between the input layer and this layer correspond to the pa-

rameters defining the membership functions. These weights are adjusted during the 

training process to capture the input-output relationships. 

3. Rule Layer (Layer 3):  The third layer calculates the truth values of the fuzzy rules 

based on the membership degrees obtained in the fuzzification layer. The weights be-

tween the fuzzification layer and this layer define the chosen AND operator for com-

bining the antecedents of the fuzzy rules [4]. 

   Each fuzzy rule typically consists of an antecedent (conditions) and a consequent 

(output). 

4. Output Layer (Layer 4): The fourth layer represents the output layer of the system. 

The weights between the rule layer and this layer correspond to the conclusion parts of 

the rules. These weights determine the contribution of each rule to the overall output. 

The output of this layer is computed based on the activations received from the rule 

layer, representing the system's final output. 
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Fig. 5. Self-Tuning Fuzzy Inference System. 

Architecture and learning Algorithm Architecture 

Several algorithms can be used to optimize the adjustable parameters of the net-

work. In our application, we will use the backpropagation algorithm to adjust the 

weights of the last layer of the network[10]. The general principle of this method can 

be summarized as follows: at each iteration, we modify the weights of the output layer 

in the opposite direction of the cost function gradient. We reiterate this process until 

the weights of the output layer have converged, meaning that the difference between 

the network output and the desired output becomes acceptable. 

 The optimization process in a Self-Tuning Fuzzy Inference System (STFIS) is 

indeed conducted online; meaning it dynamically adjusts and updates its parameters as 

new data is at hand. The primary goal of this optimization process is to reduce a cost 

function, which usually consists of two key components: Quadratic Error Term, Param-

eter Regression Term [11]. 

The combination of these two components with in the cost function, the optimization 

process aims to continuously refine the STFIS model to better capture the underlying 

relationships in the data and make more accurate predictions or decisions. This dynamic 

adaptation is essential for ensuring the effectiveness and adaptability of the STFIS in 

real-world applications [11]. 

 
                                                            𝐽 = 𝐸 + 𝜆∑𝑤𝑖

2                                                      (12) 
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                                                              𝐸 =
1

2
𝜀2                                                             (13) 

𝜆 : is a constant that controls the growth parameters. 

𝜀 : error term. 

𝑤𝑖: layer weight.  

By focusing solely on the optimization of the output conclusions, we obtain: 

𝛥𝑤1𝑗
4 (𝑘) = −𝜂𝛿1

4𝛼𝑗
3 + 𝑏𝛥𝑤1𝑗

4 (𝑘 − 1) − 𝛼𝑗
3𝛽𝑤

1𝑗
4 (𝑘 − 1)/∑𝛼𝑗

3 (14) 

                                            𝛿1
4 = 𝑦𝑒 − 𝑦𝑑/∑ 𝛼𝑗

3
𝑗  (15) 

Where: 

𝑦𝑒: actual output value. 𝑦𝑑 : desired output. 

𝛽 = 2𝜆𝜂 (regression coefficient). 

𝛼𝑖 is the truth value of the premise part of the triggered rule. 

𝑏: Moment: This parameter ranges between 0 and 1;  𝑏𝛥𝑤𝑖𝑗
𝑛(𝑘 − 1) helps avoid local 

minima by incorporating weight variations. 

k : the iterations. 

𝑤𝑖𝑗
𝑛  : Weight between then neural ith of layer and jth the neural of layer n-1. 

𝜂 : Optimization gain. 

For the control of the inverted pendulum, we have used the architecture known as 

the” mini -JEAN” as illustrated in the Fig.6. This architecture doesn’t require an emu-

lator net-work. It uses only one network as a controller, the learning of which is done 

directly by the back propagation of the output error[11]. 

 

 

Fig. 6. control architecture mini-JEAN. 
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Application of the STFIS Control for Inverted Pendulum 

 In this work, we first apply the Self-Tuning Fuzzy Inference System (STFIS) to the 

inverted pendulum problem, and then integrate it into the proposed control law, as il-

lustrated in Fig.6. 

A fuzzy controller, based on online optimization of a zero-order Takagi-Sugeno in-

ference system, is successfully implemented. It is used to minimize a cost function con-

sisting of a quadratic error term. The controller architecture used is the well-known 

mini-JEAN structure, see Fig.6. 

Regarding the STFIS network parameters, five membership functions of the sigmoid 

and Gaussian types were employed (see Fig.7). These membership functions are nor-

malized and distributed into five subsets across the full range of displacement. The as-

sociated linguistic labels are defined as follows: 

• NB: Negative Big 

• NS: Negative Small 

• Z: Approximately Zero 

• PS: Positive Small 

• B: Positive Big 

 

Fig. 7. Memberships function. 

In order to validate our approach, we will present the parameters of the robust com-

mand in the following table: 
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Table 1. parameters of the controller STFIS. 

 

 

The parameters of 

𝑆𝑇𝐹𝐼𝑆  

  0.3 

  0.00006 

b  0.9 

STFIS Ge  

eG  

Gc  

0.1 ,0.1,10 

 

Fig.8. illustrates the response of the STFIS controller applied to the inverted pendulum, 

following a specified desired angular trajectory. It can be observed that the actual tra-

jectory of the pendulum closely matches the desired trajectory, even in the presence of 

external disturbances. 

 

Fig. 8. Tracking trajectories for inverted pendulum. 
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Fig. 9. Tracking errors for inverted pendulum 

Based on this inference, it can be concluded that the STFIS training has been suc-

cessfully achieved, and the tracking error of the inverted pendulum is nearly zero, as 

shown in Fig.6. 

 

Fig. 10. The parameters (weights) 

 Fig. 9 illustrates the convergence of the parameters (weights) in the final layer of the STFIS 

network. 
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The STFIS controller demonstrates highly effective tracking performance and ex-

hibits strong adaptability to varying dynamic conditions. 
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