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Abstract. 

  Ocular hypertonia, a major risk factor for glaucoma, leads to gradual retinal 

degradation and is often asymptomatic in its early stages, making early detection challenging. 
In recent years, the use of Artificial Intelligence (AI), particularly deep learning, has 

significantly enhanced the analysis and interpretation of medical images for diagnostic 

purposes. 

This project aims to detect and classify ocular hypertension through the analysis of fundus 
images using deep learning. A hybrid approach combining a Convolutional Neural Network 

(U-Net) with fuzzy logic known as a Neuro-Fuzzy system was employed. The U-Net model 

automatically extracts features from preprocessed fundus images and classifies them into two 

categories: diseased or normal. Fuzzy logic is then applied to refine this classification into three 

stages, improving diagnostic precision. 

The integration of U-Net with fuzzy logic has demonstrated strong potential in retinal 

pathology assessment, offering improved handling of uncertainty and variability inherent in 

medical data 

Keywords:  Artificial Intelligence, fuzzy Logic, hypertensive ocular,    

             convolutional neural networks (CNN), U-Net, optic nerve head 

(ONH)  
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1. Introduction 
 

 

 Intraocular pressure (IOP) is the most important modifiable risk factor for 

glaucoma and fluctuates considerably within patients over short and long time periods 

Our field's understanding of IOP has evolved considerably in recent years, driven by 

tonometric technologies with increasing accuracy, reproducibility, and temporal 

resolution that have refined our knowledge regarding the relationship between IOP 

and glaucoma risk and pathogenesis  

Glaucoma is defined as progressive optic neuropathy that damages the structural 

appearance of the optic nerve head and is characterized by permanent blindness.  

 In ophthalmology, intraocular pressure refers to a group of eye diseases that 

affect the optic nerve. This damage is primarily caused by elevated intraocular 

pressure (IOP), particularly in adults and individuals over the age of 55 [1], [3]. 

Various approaches have been developed to detect retinal diseases such as syndrome 

of Ocular hypertonia .For instance, successfully trained a machine learning model 

using the publicly available Retinal Fundus Images for Glaucoma Analysis (RIGA) 

[8] dataset, achieving notable accuracy. Similarly, in [9] were able to automatically 

measure the cup-to-disc ratio (CDR) by conducting online contour analysis of retinal 

images. 

 

In other hand Ophthalmology is the medical specialty that makes greater use of 

artificial intelligence. While the use of classification and segmentation algorithms 

based on machine learning and computer vision techniques demonstrated effective 

and correct diagnosis of this eye disease [15]. 

 

 Convolutional neural networks (CNNs) with more hidden layers have a more 

complicated network structure and stronger feature learning and feature expression 

capabilities than conventional machine learning techniques as a result of the advent of 

the massive data era. 

 

The remainder of this paper is organized into seven sections. Section 2 provides a 

concise overview of the relationship between intraocular pressure syndrome and 

glaucoma. Section 3 introduces fundamental principles of fuzzy logic. Section 4 

presents the main concepts underlying Convolutional Neural Networks (CNNs). In 

Section 5, we describe the proposed CNN and fuzzy logic-based approach for 

glaucoma detection. Sections 6 and 7 detail the experimentation and implementation 

of our methodology, which was validated through Python simulations. Finally, the 

concluding section offers a comparative analysis of the proposed method and the 

VGGNet-16 architecture, demonstrating reliable and accurate results across multiple 

test cases 
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2. The relationship between intraocular pressure and glaucoma 
 

 
2.1      Glaucoma  
                In the realm of ophthalmology, the glaucoma family of eye disorders affects 

the optic nerve. Glaucoma is associated with intraocular problems (eye pressure, IOP), 

although other causes include excessive blood pressure, migraines, ethnicity, and 

family history. Elevated IOP in adults and people over 60 years of age causes damage 

to the optic nerve [1] [3]. The area of the optic disc (OD) known as the optic nerve 

head (ONH) is where optic nerve degeneration takes place. Every type of glaucoma is 

incurable, and the majority of its damage cannot be repaired. 

Glaucoma is a progressive, neurodegenerative optic neuropathy of multi factorial 

etiology which results in the death of retinal ganglion cells (RGCs). Intraocular 

pressure (IOP) is the most important identifiable and, presently, the only modifiable 

risk factor for glaucoma. IOP stress initiates an RGC axonal injury at the level of the 

optic nerve head. [4]. 

Reducing the disease's rate of progression is one of the options available to sufferers. 

Therefore, early disease resolution is essential to the survival of all medications. Early 

conclusions are rare, however, due to the absence of self-evident indications. We were 

able to examine glaucoma by measuring the diameters of the OC and OD (a 

discouragement within the OD) by the examination of fundus photographs. The CDR 

for the normal eye is 0.65, according to [5] (see Fig. 1). 

 

 

 

 

 

 

 

 

 

 

 

Fig.1. Cropped digital fundus photos surrounding the optic disc. a healthy optic disc's main 

structures,  b a glaucoma optic disc's. 

 

In the context of image analysis, datasets are collections of relevant images with well 

defined regions of interest. The number of photos can range from a few hundred to 

thousands. It has been shown that analysis quality significantly improves with dataset 

size. [2] [17] [16]. 
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  2.2   Intraocular pressures 

 

 Recorded observations of blind eyes with nonreactive pupils that felt hard to 

palpation date back to the ancient Greeks, though it wasn’t until the early 19th century 

that Gurthrie coined the term “glaucoma” to describe a blinding eye disease associated 

with increased ocular tension [19] .As technology to accurately measure IOP 

advanced over the course of the following century and population-based IOP 

distributions in healthy individuals were measured, the association between glaucoma 

And IOP was considered an absolute –patients with an IOP greater than 2 standard 

deviations above the mean of the population average (frequently cited as being 21 

mmHg) were considered to have a disease warranting treatment. Mansour Armaly is 

credited as being among the first to challenge this notion by reporting a cohort of 

individuals with ocular hypertension who did not develop visual field defects over a 

7-year follow-up period, [20] a finding later substantiated by the Ocular Hypertension 

Treatment Study (OHTS) [18] [3]. 

Thus, our understanding of the relationship between IOP, glaucoma, and 

optic nerve pathology, has evolved considerably. It is now recognized that 

susceptibility to IOP depends on individual characteristics related to the eye’s 

response to varying IOP levels, since patients who develop glaucoma at IOP within 

the population normative range still benefit from IOP reduction [25] and many people 

tolerate an IOP well above the normal range for decades without developing optic 

neuropathy [18]. 

 

3. Fuzzy logic  

A neuro-fuzzy system is a hybrid intelligent system that combines the 

strengths of neural networks and fuzzy logic. It leverages the learning capabilities of 

neural networks with the reasoning and interpretability of fuzzy logic, allowing for 

more effective modeling, reasoning, and decision-making in complex, uncertain, and 

dynamic environments.  

3.1      Neuro-Fuzzy Systems 

Neuro-Fuzzy Systems = Neural Networks + Fuzzy Logic . 

Neuro-fuzzy systems are artificial intelligence systems that combine fuzzy logic with 

artificial neural networks. They are capable of processing complex and uncertain data 

and can solve classification and prediction problems in a way that closely resembles 

human reasoning (see Fig. 2) . 
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Fig 2: Principle of the Neuro-Fuzzy system . 

4. Convolution neural networks 
 

          Convolutional Neural Networks (CNNs) are deep learning architectures 

specialized in processing image and visual data. They consist of hierarchical layers 

that automatically learn spatial features from input images. The core components 

include convolutional layers for local feature extraction, pooling layers for 

dimensionality reduction and overfitting control, and fully connected layers for final 

classification. Non-linearity is introduced through activation functions like ReLU, 

while normalization and dropout techniques enhance model generalization. CNN 

architectures range from simple models such as LeNet and U-Net to more complex 

ones like VGG, ResNet, and Inception. CNNs have achieved outstanding performance 

in image classification, object detection, and medical image analysis, particularly in 

detecting retinal diseases such as glaucoma. (see  Fig. 2). [15] 

 

 
Fig.2.Typical convolutional neural  network (CNN)   structure 

 

 
 
 



12 6 

 

4.1. Convolutional layers 

 

Convolutional Neural Networks (CNNs) extract localized features from input data 

using filters in convolutional layers, which reduces the number of parameters and 

supports deeper model architectures [6]. By preserving spatial relationships and 

minimizing issues like vanishing or exploding gradients, CNNs are particularly well-

suited for image analysis.  [9][10][15]. 

 

4.2. Pooling layers 

In Convolutional Neural Networks (CNNs), pooling layers are used after 

convolutional layers to perform downsampling by reducing the spatial dimensions of 

feature maps. This process minimizes computational complexity and the number of 

parameters, thus helping to mitigate overfitting. Pooling can be applied locally or 

globally, with the most common techniques being max pooling selecting the 

maximum value in a region and average pooling calculating the mean. Typically, a 

2×2 filter with a stride of 2 is used, halving the spatial resolution while maintaining 

the depth of the feature maps. [6]. 

 

                                                   𝑓𝑋,𝑌(𝑆) = 𝑚𝑎𝑥𝑎,𝑏=0
1  𝑆2𝑋+𝑎,2𝑌+𝑏                       (1) 

 

Stride regulates the assignment of depth columns around the width and height, while 

the depth of the output volume limits the number of neurons in a layer that connect to 

the same area of the input volume (see Fig. 3). 

 

 
 
Fig.3  :  With a 2x2 filter and a stride of 2, maximum pooling 

 

4.3. Receptive field 
 

In neural networks, particularly in CNNs, each neuron receives input from a specific 

region of the previous layer, known as its receptive field. This region is typically a 

fixed-size square, such as 5×5 neurons. In fully connected layers, the receptive field 

encompasses the entire previous layer. As layers are stacked, the receptive field 

expands in coverage but not in pixel count, enabling neurons to capture broader 

contextual information while preserving computational efficiency[7]. 
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4.4.       Weights 
 

Each neuron in a neural network computes an output by applying a function to inputs 

from its receptive field, governed by a set of weights and a bias. During training, 

these parameters are adjusted to improve performance. A key advantage of CNNs is 

weight sharing: multiple neurons use the same filter across different regions of the 

input. This significantly reduces the number of learnable parameters and memory 

requirements, enhancing computational efficiency. [8]. 

4.5. ReLU layer 
 

The non-saturating activation function [13] is applied by the name "rectified linear 

unit" (abbreviated "ReLU"), as (2) illustrates: 

 

𝑓(𝑥) = max (0,𝑥)        (2) 

 
Negative values are successfully  removed from an activation map by setting them to 

zero [13]. 

 

4.6. Loss layer 
 

The loss layer, positioned at the bottom of a neural network, quantifies the error 

between the model’s prediction and the actual target value. In classification tasks 

involving discrete variables (e.g., 0 or 1 for class membership), the cross-entropy loss 

function is widely adopted. Rooted in information theory, cross-entropy measures the 

divergence between predicted and true probability distributions, making it particularly 

effective for evaluating classification performance [4]. 

 

𝑙𝑜𝑠𝑠(𝑥, 𝑐𝑙𝑎𝑠𝑠) = − ∑ Yx,class log (𝑐
𝑐𝑙𝑎𝑠𝑠=1 𝑃𝑥,𝑐𝑙𝑎𝑠𝑠)                       (3) 

 
Given that there are C classes, Y is the estimated chance that x belongs to class I, and 

P is the actual probability.[13]  

 

5. CNN based glaucoma detection approach 
 
 As part of this work, we are tasked with designing and developing a system 

that classifies the different stages of intraocular hypertension based on fundus 

(retinal) images. The classification is carried out in three stages according to the 

severity of the disease. 

The retinal image data is divided into two sets: training data and testing data. To 

ensure the accuracy and validity of our model, the data undergoes a preprocessing 

phase. We then use a deep learning model called U-Net (based CNN), specifically 

designed for medical image classification. The model takes the preprocessed training 

images as input and is trained on a portion of this data to learn the key features of 
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each image, in order to produce an accurate estimation of the probability of the 

presence or absence of the disease. (seeFig4) 

 The final system is capable of classifying a new retinal image (the patient’s 

fundus image) using the pre-trained model. If the model predicts that the image 

contains signs of the disease with a probability higher than 30%, we apply fuzzy 

logic to determine the disease stage using specific fuzzy inference rules. Otherwise, 

the patient is considered normal. 

This method can assist healthcare professionals in diagnosing potential eye diseases 

quickly and accurately, which can improve treatment outcomes and help preserve 

patients’ vision in the long term. (seeFig.4) 

  

5.1. Learning phase 
 

The CNN glaucoma detection approach's initial step is givin in the flowchart below 

(see Fig 4). The first step in this learning phase is to import the dataset, which is then 

trained using several pre-processing steps. Lunch is the next step in the CNN training 

process, which yields a trained model that can be saved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4 : Flowchart represents the algorithmic steps for classification face 
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5.2. Classification phase 
 

The patient's fundus image serves as the basis for the second component of the CNN-

based glaucoma diagnostic method. Following CNN training, the model is produced 

(see Fig. 4). The binary function's output represents the decision. According to Fig. 4, 

the latter is understand in two situations: either the patient has glaucoma disease or 

not. 
 

6. Experimentation 
 

6.1. Datasets settings 
 

The set of data used in this study is publicly available and was downloaded from the 

KAGGLE website, which is intended for the diagnosis of intraocular hypertension. The 

two main classes that make up this ensemble are called " sick  " for photographs of sick 
patients and "Normal " for images of healthy patients. 

The data base includes 4865 retinal pictures in total, varying in shape and length, created 

as follows: 

• 1556 photos for the "Normal " class; 3309 photos for the "glaucoma " class. (see Fig.5) 

 

 

 

 

 
 

 

 

 

 

 

Fig.5. Examples of new publicly available dataset (KAGGLE-Data). Normal and glaucoma    

 fundus images  

 

6.2. Dataset Preparation  
  

Before feeding data into the CNN (U-Net), image processing techniques must be 

applied to ensure the data is suitable for building an effective deep learning model. In 

our work, data preparation involves three main steps: 

Preprocessing and spliting dataset  
Images are processed to enhance clarity and compatibility with the model. This step 

includes resizing, grayscale conversion, and thresholding  (see Fig.6 a). 
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The dataset was divided into two sets: a training set (80%) containing 3891 images, 

and a test set (20%) containing 974 images (see Fig.6 b). 

                                 b   

Fig.6 : a) step of processing  includes resizing, grayscale conversion, and thresholding 
                                b)  Splitting of  dataset  

  Dataset-Augmentation         
         Data augmentation addresses overfitting issues by increasing the 
dataset size. The dataset provided by Kaggle is imbalanced. To balance it, 

data augmentation is necessary. The following techniques were applied to 

both the training and test sets (see Fig 7.a, 7.b): 

 Image normalization 

 Image rotation 

 Image flipping (horizontal and vertical) 

 Image zooming 

  

Fig 7.a: Original image.  

 

Fig 7.b: Images after horizontal flip (left) and vertical 

flip (right). 

a 

processed dataset 
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6.3. U-Net  Model  Creation  

The architecture of our model is quite large, so we have illustrated it in the figures 

below: 
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6.4. Performance Metrics 

  
Performance metrics are used to evaluate learning algorithms and are a crucial aspect 

of machine learning. Evaluating the performance of a classification system is a very 

important phase, as it reflects the reliability of the proposed system.  

In medical applications, overall accuracy and error rate alone are not sufficient to 

assess performance. 

          In this work, we analyzed the behavior of our U-Net classifiers by applying 

several performance metrics to better evaluate the system and understand its behavior. 

The adopted metrics are defined as follows [23]:                                                  

                
Confusion matrix            

            The confusion matrix allows the performance of each class to be evaluated 

individually. It is a matrix with dimensions equal to the number of classes  

Accuracy (Correct Classification Rate) 
             Accuracy is the most straightforward and natural indicator for evaluating the 

performance of a classification system. It represents the percentage of correctly 

identified instances by the system and is easy to calculate [23]. 

 

Accuracy (ccr) =
number of correctly identified elements

total number of elements 
=

100∗(TP+TN)

TP+FP+TN+FN
                     (4) 

Precession (Prec)  

The percentage of instances classified as positive that are actually positive [71]. 

Prec =
100∗TP

TP+FP   
                                               (5) 

Recall 
The percentage of positive instances that are correct8ly classified by the model [71]   

Recall =
100∗TP

TP+FN
                                              (6) 
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F-Measure (F1 Score)  

This metric is used to calculate the balance between precision and recall. It is given 

by the equation below [71]:    

F1 =
((1+β2)∗prec∗recall)

((β2∗prec)+recall)
                                                (7) 

The parameter β allows weighting either precision or recall; it is generally set to 1. 

7. Simulation Results and Discussion 

Before experimenting with the final model designed for intraocular hypertension 

classifiers, we conducted several parametric tests on two models: U-Net and VGG16, 
then compared their results. Table.1 presents the results obtained by our U-Net model 

on three different datasets, each with varying image sizes. In each case, accuracy and 

loss values were calculated, along with the execution time. These measurements help 

evaluate both the quality and speed of the results achieved for the different 

classification tasks performed. 

            Table .1: Representation of  the three different datasets. 

 Number 

of 

Images 

Diseased 

Class 

Normal 

Class 

Number 

of 

Iterations 

Batch 

Size 
Accuracy Loss Time 

Datase

t 1 
7492 1098 6394 100 80 99% 0.024 

1h20 

min 

Datase

t 2 
10865 6309 4556 100 80 81% 0.40 2h 

Datase

t 3 
4865 3309 1556 100 80 92% 0.19 

25 

Min 

8.1. Presentation of obtained Performance 
 

To visualize the performance of our deep learning U-Net model over time during 

training, we created graphs for Accuracy, Loss, Recall, Precision, and AUC.(see Fig 8) 
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 Accuracy (score) and Loss 

 

 

 

 

 

Fig 8 : Accuracy (Score) curve of the U-Net model over 150 epochs. 

After examining the results shown in Fig.8, we observe that the accuracy curves for 

both the training and test sets gradually increase as the number of epochs grows. This 

indicates that the model is learning new information with each epoch. 

Although the training set accuracy reaches a high maximum of 92%, the test set 

shows a slightly lower accuracy, peaking at 86%. This may suggest that the model is 

overfitting to the training data and does not generalize well to new data. It is 

important to note that this overfitting could be due to the relatively small size of the 

dataset used for this project (about 4,865 images), rather than an inherent weakness of 

the model. 

 

Fig 9 : Loss curve of the U-Net model over 150 epochs. 
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After analyzing Fig.9, we can observe that the loss curves for both the training and 

test sets decrease significantly as the number of epochs increases. The initial training 

loss was around 0.3, but it quickly dropped to a final value of 0.19 after 150 epochs. 

Similarly, the test loss also gradually decreased, reaching a final value of 0.28 at the 

same epoch. 

This suggests that the model was trained effectively and its performance steadily 

improved over time. The low loss rates for both training and test sets indicate that the 

model is capable of providing accurate predictions for both datasets, with minimal 

classification errors. 

 Precision, Recall, and AUC 

 

 

 

 

 

 

 

 

 

 

 

Fig.10 : Precision curve of the U-Net          Fig.11: Recall curve of the U-Net    

 model                                                             model 

 

Fig.12: AUC curve of the U-Net model. 
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After careful evaluation of the results presented in the previous figures, we observe 

that the trends of the curves are similar and upward. The metrics (Recall, Precision, 

and AUC) steadily improve over the epochs for both datasets (training and testing). 

This can be an important indicator of the model’s effectiveness, as these metrics 

reflect its ability to provide accurate predictions on new data.(see Fig. 10,11,12) 

Classification Report  

To comprehensively evaluate our model’s performance, we need to analyze precision, 

recall, and F1 score through a classification report, as shown in Fig.13: 

 

Fig.13:  Classification report. 

When evaluating the classification report results of our U-Net model, we note that the 

performance varies between the two classes. Indeed, the diseased class has a recall, 

precision, and F1-score of 0.68, indicating that the model is reasonably able to 

identify diseased cases with 68% accuracy. However, the normal class has very low 

recall, precision, and F1-score values of 0.31, suggesting that the model struggles to 

correctly identify this class. 

This may be due to several factors, such as imbalances in the dataset or increased 

complexity in distinguishing the normal class. It is important to note that the support 

for the diseased class (2,647) is significantly higher than that of the normal class 

(1,244), which may also influence classification performance. 

Confusion matrix  

To understand the types of errors made by our classification model, we will use the 

confusion matrix, which provides a summary of the prediction results. 
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Fig.14: confusion Matrice. 

Based on the confusion matrix obtained for our classification model, the performance 

for the diseased and normal classes can be analyzed as follows: the model was able to 

correctly identify a large number of diseased cases (TP = 1801). However, the model 

had a significant number of false positives (FP = 846), meaning it misclassified many 

normal cases as diseased. 

Furthermore, for the normal class, the model misclassified a large number of normal 

cases as diseased (FN = 856), indicating difficulty in correctly identifying this class. 

Additionally, the number of correctly identified normal cases (TN = 388) is very low 

compared to the total number of normal cases. 

7.1. Comparison of Results Between U-Net and VGG16 Networks 

 
After training our two models, we will discuss the results shown in Fig.15and 16  

below: 

 

 

Fig.15: Training results of the U-Net model. 
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Fig.16: Training results of the VGG16 model. 

a) The following tables show the training results of our two models for the first and 

last iterations: 

 Iteration 1: 

Table 2: Training results of the two models for iteration 1. 

 

 

Accuracy Loss Precision recall AUC 

Val 

accurac

y 

Val 

loss 

Val 

precision 

Val 

recall 

Val 

AUC 

U-Net 0.87 0.28 0.87 0.87 0.94 0.78 0.4 0.78 0.78 0.88 

VGG16  0.6 0.70 0.66 0.66 0.68 0.69 0.6 0.69 0.68 0.68 

 Itération 150 : 

Table 3: Training results of the two models for iteration 150. 

 
Accuracy Loss Precision recall AUC 

Val 

accuracy 

Val 

loss 

Val 

precision 

Val 

recall 

Val 

AUC 

U-Net 0.91 0.1 0.91 0.91 0.97 0.88 0.2 0.88 0.88 0.95 

VGG16 0.68 0.6 0.68 0.68 0.68 0.69 0.5 0.69 0.68 0.68 

After analyzing the performance of the U-Net and VGG16 models shown in Tables 2 

and 3, we conclude that the performance metrics of the U-Net model steadily increase 

with the number of epochs, indicating that the model continues to learn and improve 
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as training progresses. In contrast, the performance metrics of the VGG16 model 

show little increase over the epochs and remain almost stable, suggesting that the 

model quickly reaches a performance plateau. 

b) The following figures display the curves of the performance metrics Recall, 

Precision, and AUC for the U-Net and VGG16 models: 

 

 

 

 

 

 

Fig17: AUC of U-Net et VGG16                     Fig.18: Accuracy of  U-Net et VGG16  

 

 

 

 

 

 

 

 

 

Fig.19: Précision du modèle U-Net et VGG16.  Fig.20: Recall du modèle U-Net et   

VGG16. 

Based on the obtained results, it is clear that the performance differs between the two 

networks, with U-Net performing better. The curves show that the VGG16 model is 

more stable, with performance stabilizing more quickly, although at a lower level. 

This can be explained by several possible reasons, notably the specific design of the 

U-Net model for medical image segmentation. The skip connections used by U-Net to 

merge features at different resolution levels may enhance its ability to capture finer 
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structures in images, which partly explains why the model’s performance continues to 

improve with more training epochs. 

In contrast, the VGG16 model uses a deeper architecture with smaller convolutions 

but fewer complex feature combinations. It is therefore possible that the problem is 

more challenging for VGG16, which may explain why its performance plateaus 

earlier. 

7.2. Test Results 

 

 

 

 

 

 

Fig.21: Example of a result for a diseased patient. 

 

 

 

 

Fig 22: Example of a result for a normal patient. 

Normal patient  

Probability representation  
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In this paper, we presented our proposed methodology to design a classification 

model for the stages of intraocular hypertension, using a convolutional neural network 

(CNN)  specifically U-Net  combined with the concept of fuzzy logic. We also 

reviewed the state of the art regarding CNN applications in medical imaging. 

 To implement our methodology, we relied on a variety of hardware and 

software tools. Then, the results obtained by our U-Net model were presented and 

compared with  those  from the VGG16 network. This comparison showed that the U-

Net model enables precise and reliable classification of the different stages of 

intraocular hypertension, representing a significant improvement over traditional 

methods. 

 Finally,this work creates numerous research opportunities. More research is 

required to refine some of the concepts that we have introduced. 
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