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Abstract.

Ocular hypertonia, a major risk factor for glaucoma, leads to gradual retinal
degradation and is often asymptomatic in its early stages, making early detection challenging.
In recent years, the use of Artificial Intelligence (Al), particularly deep learning, has
significantly enhanced the analysis and interpretation of medical images for diagnostic
purposes.

This project aims to detect and classify ocular hypertension through the analysis of fundus
images using deep learning. A hybrid approach combining a Convolutional Neural Network
(U-Net) with fuzzy logic known as a Neuro-Fuzzy system was employed. The U-Net model
automatically extracts features from preprocessed fundus images and classifies them into two
categories: diseased or normal. Fuzzy logic is then applied to refine this classification into three
stages, improving diagnostic precision.

The integration of U-Net with fuzzy logic has demonstrated strong potential in retinal
pathology assessment, offering improved handling of uncertainty and variability inherent in
medical data
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1. Introduction

Intraocular pressure (IOP) is the most important modifiable risk factor for
glaucoma and fluctuates considerably within patients over short and long time periods
Our field's understanding of IOP has evolved considerably in recent years, driven by
tonometric technologies with increasing accuracy, reproducibility, and temporal
resolution that have refined our knowledge regarding the relationship between I0P
and glaucoma risk and pathogenesis
Glaucoma is defined as progressive optic neuropathy that damages the structural
appearance of the optic nerve head and is characterized by permanent blindness.

In ophthalmology, intraocular pressure refers to a group of eye diseases that
affect the optic nerve. This damage is primarily caused by elevated intraocular
pressure (IOP), particularly in adults and individuals over the age of 55 (1], [3].
Various approaches have been developed to detect retinal diseases such as syndrome
of Ocular hypertonia .For instance, successfully trained a machine learning model
using the publicly available Retinal Fundus Images for Glaucoma Analysis (RIGA)
[8] dataset, achieving notable accuracy. Similarly, in [9] were able to automatically
measure the cup-to-disc ratio (CDR) by conducting online contour analysis of retinal
images.

In other hand Ophthalmology is the medical specialty that makes greater use of
artificial intelligence. While the use of classification and segmentation algorithms
based on machine learning and computer vision techniques demonstrated effective
and correct diagnosis of this eye disease [15].

Convolutional neural networks (CNNs) with more hidden layers have a more
complicated network structure and stronger feature learning and feature expression
capabilities than conventional machine learning techniques as a result of the advent of
the massive data era.

The remainder of this paper is organized into seven sections. Section 2 provides a
concise overview of the relationship between intraocular pressure syndrome and
glaucoma. Section 3 introduces fundamental principles of fuzzy logic. Section 4
presents the main concepts underlying Convolutional Neural Networks (CNNSs). In
Section 5, we describe the proposed CNN and fuzzy logic-based approach for
glaucoma detection. Sections 6 and 7 detail the experimentation and implementation
of our methodology, which was validated through Python simulations. Finally, the
concluding section offers a comparative analysis of the proposed method and the
VGGNet-16 architecture, demonstrating reliable and accurate results across multiple
test cases
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2. The relationship between intraocular pressure and glaucoma

2.1 Glaucoma

In the realm of ophthalmology, the glaucoma family of eye disorders affects
the optic nerve. Glaucoma is associated with intraocular problems (eye pressure, 10P),
although other causes include excessive blood pressure, migraines, ethnicity, and
family history. Elevated IOP in adults and people over 60 years of age causes damage
to the optic nerve [1] [3]. The area of the optic disc (OD) known as the optic nerve
head (ONH) is where optic nerve degeneration takes place. Every type of glaucoma is
incurable, and the majority of its damage cannot be repaired.
Glaucoma is a progressive, neurodegenerative optic neuropathy of multi factorial
etiology which results in the death of retinal ganglion cells (RGCs). Intraocular
pressure (IOP) is the most important identifiable and, presently, the only modifiable
risk factor for glaucoma. IOP stress initiates an RGC axonal injury at the level of the
optic nerve head. [4].
Reducing the disease's rate of progression is one of the options available to sufferers.
Therefore, early disease resolution is essential to the survival of all medications. Early
conclusions are rare, however, due to the absence of self-evident indications. We were
able to examine glaucoma by measuring the diameters of the OC and OD (a
discouragement within the OD) by the examination of fundus photographs. The CDR
for the normal eye is 0.65, according to [5] (see Fig. 1).

Fig.1. Cropped digital fundus photos surrounding the optic disc. a healthy optic disc's main
structures, b a glaucoma optic disc's.

In the context of image analysis, datasets are collections of relevant images with well
defined regions of interest. The number of photos can range from a few hundred to
thousands. It has been shown that analysis quality significantly improves with dataset
size. [2] [17] [16].
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2.2 Intraocular pressures

Recorded observations of blind eyes with nonreactive pupils that felt hard to
palpation date back to the ancient Greeks, though it wasn’t until the early 19th century
that Gurthrie coined the term “glaucoma” to describe a blinding eye disease associated
with increased ocular tension [19] .As technology to accurately measure IOP
advanced over the course of the following century and population-based IOP
distributions in healthy individuals were measured, the association between glaucoma
And IOP was considered an absolute —patients with an IOP greater than 2 standard
deviations above the mean of the population average (frequently cited as being 21
mmHg) were considered to have a disease warranting treatment. Mansour Armaly is
credited as being among the first to challenge this notion by reporting a cohort of
individuals with ocular hypertension who did not develop visual field defects over a
7-year follow-up period, [20] a finding later substantiated by the Ocular Hypertension
Treatment Study (OHTS) [18] [3].

Thus, our understanding of the relationship between 10P, glaucoma, and
optic nerve pathology, has evolved considerably. It is now recognized that
susceptibility to IOP depends on individual characteristics related to the eye’s
response to varying IOP lewels, since patients who develop glaucoma at 10P within
the population normative range still benefit from IOP reduction [25] and many people
tolerate an IOP well above the normal range for decades without developing optic
neuropathy [18].

3. Fuzzy logic

A neuro-fuzzy system isa hybrid intelligent system that combines the
strengths of neural networks and fuzzy logic. It leverages the learning capabilities of
neural networks with the reasoning and interpretability of fuzzy logic, allowing for
more effective modeling, reasoning, and decision-making in complex, uncertain, and
dynamic environments.

3.1  Neuro-Fuzzy Systems

Neuro-Fuzzy Systems = Neural Networks + Fuzzy Logic .
Neuro-fuzzy systems are artificial intelligence systems that combine fuzzy logic with
artificial neural networks. They are capable of processing complex and uncertain data
and can solve classification and prediction problems in a way that closely resembles
human reasoning (see Fig. 2) .
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Fig 2: Principle of the Neuro-Fuzzy system .

4. Convolution neural networks

Convolutional Neural Networks (CNNs) are deep learning architectures
specialized in processing image and visual data. They consist of hierarchical layers
that automatically learn spatial features from input images. The core components
include convolutional layers for local feature extraction, pooling layers for
dimensionality reduction and overfitting control, and fully connected layers for final
classification. Non-linearity is introduced through activation functions like RelLU,
while normalization and dropout techniques enhance model generalization. CNN
architectures range from simple models such as LeNet and U-Net to more complex
ones like VGG, ResNet, and Inception. CNNs have achieved outstanding performance
in image classification, object detection, and medical image analysis, particularly in
detecting retinal diseases such as glaucoma. (see Fig. 2). [15]

fc_3 fc 4
Fully-Connected Fully-Connected
Neural Network Neural Network
Conv_1 Conv_2 RelU activation
Convolution Convolution | K—M
(5x5) k"'.'e' Max-Pooling (5 x5) kernel Max-Pooling (with
valid padding (2x2) valid padding (2x2) dropouit
~—— A ®o
r— 91
INPUT nlchannels nl channels n2 channels n2 channels E ' 9
(28x28x1) (24x24xn1) (12x12xn1) (8x8xn2) (4x4xn2) OUTPUT

Fig.2.Typical convolutional neural network (CNN) structure
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4.1. Convolutional layers

Convolutional Neural Networks (CNNs) extract localized features from input data
using filters in convolutional layers, which reduces the number of parameters and
supports deeper model architectures [6]. By preserving spatial relationships and
minimizing issues like vanishing or exploding gradients, CNNs are particularly well-
suited for image analysis. [9][10][15].

4.2. Pooling layers

In Convolutional Neural Networks (CNNSs), pooling layers are used after
convolutional layers to perform downsampling by reducing the spatial dimensions of
feature maps. This process minimizes computational complexity and the number of
parameters, thus helping to mitigate overfitting. Pooling can be applied locally or
globally, with the most common techniques being max pooling selecting the
maximum value in a region and average pooling calculating the mean. Typically, a
2x2 filter with a stride of 2 is used, halving the spatial resolution while maintaining
the depth of the feature maps. [6].

fx,y(s) = maxall,b=o Sox+a2v+b 1)

Stride regulates the assignment of depth columns around the width and height, while
the depth of the output volume limits the number of neurons in a layer that connect to
the same area of the input volume (see Fig. 3).
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Fig.3 : With a 2x2 filter and a stride of 2, maximum pooling

4.3. Receptive field

In neural networks, particularly in CNNs, each neuron receives input from a specific
region of the previous layer, known as its receptive field. This region is typically a
fixed-size square, such as 5x5 neurons. In fully connected layers, the receptive field
encompasses the entire previous layer. As layers are stacked, the receptive field
expands in coverage but not in pixel count, enabling neurons to capture broader
contextual information while preserving computational efficiency[7].
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4.4, Weights

Each neuron in a neural network computes an output by applying a function to inputs
from its receptive field, governed by a set of weights and a bias. During training,
these parameters are adjusted to improve performance. A key advantage of CNNSs is
weight sharing: multiple neurons use the same filter across different regions of the
input. This significantly reduces the number of learnable parameters and memory

requirements, enhancing computational efficiency. [8].

4.5. ReLU layer

The non-saturating activation function [13] is applied by the name "rectified linear
unit" (abbreviated "ReLLU"), as (2) illustrates:

f(x) = max(0,x) )

Negative values are successfully removed from an activation map by setting them to
zero [13].

4.6. Loss layer

The loss layer, positioned at the bottom of a neural network, quantifies the error
between the model’s prediction and the actual target value. In classification tasks
involving discrete variables (e.g., 0 or 1 for class membership), the cross-entropy loss
function is widely adopted. Rooted in information theory, cross-entropy measures the
divergence between predicted and true probability distributions, making it particularly
effective for evaluating classification performance [4].

lOSS(X, class) = - Zglass=1 Yx,class lOg( Px,class) (3)

Given that there are C classes, Y is the estimated chance that x belongs to class I, and
P is the actual probability.[13]

5. CNN based glaucoma detection approach

As part of this work, we are tasked with designing and developing a system
that classifies the different stages of intraocular hypertension based on fundus
(retinal) images. The classification is carried out in three stages according to the
severity of the disease.

The retinal image data is divided into two sets: training data and testing data. To
ensure the accuracy and validity of our model, the data undergoes a preprocessing
phase. We then use a deep learning model called U-Net (based CNN), specifically
designed for medical image classification. The model takes the preprocessed training
images as input and is trained on a portion of this data to learn the key features of
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each image, in order to produce an accurate estimation of the probability of the
presence or absence of the disease. (seeFig4)

The final system is capable of classifying a new retinal image (the patient’s
fundus image) using the pre-trained model. If the model predicts that the image
contains signs of the disease with a probability higher than 30%, we apply fuzzy
logic to determine the disease stage using specific fuzzy inference rules. Otherwise,
the patient is considered normal.

This method can assist healthcare professionals in diagnosing potential eye diseases
quickly and accurately, which can improve treatment outcomes and help preserve
patients’ vision in the long term. (seeFig.4)

5.1. Learning phase

The CNN glaucoma detection approach's initial step is givin in the flowchart below
(see Fig 4). The first step in this learning phase is to import the dataset, which is then
trained using several pre-processing steps. Lunch is the next step in the CNN training
process, which yields a trained model that can be saved.

| Import dataset |

. v
Binary cross | Pretreatment |
retreatmen
Resultat Entropv
) ¥
l l P Classification and | Dataset processes |
| N prediction v
Of normallitv | | Of illness | -
A Split dataset
If % of illness v
>,
30 | Learning via U-Net |
v
Normal Model evaluation U-net
; Apply fuzzy
patient .
inference rules v

4| Model train and save |

sick patient
with stage

Patient
Image
(fundus)

Fig.4 : Flowchart represents the algorithmic steps for classification face
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5.2. Classification phase

The patient's fundus image serves as the basis for the second component of the CNN-
based glaucoma diagnostic method. Following CNN training, the model is produced
(see Fig. 4). The binary function's output represents the decision. According to Fig. 4,
the latter is understand in two situations: either the patient has glaucoma disease or
not.

6. Experimentation

6.1. Datasets settings

The set of data used in this study is publicly available and was downloaded from the
KAGGLE website, which is intended for the diagnosis of intraocular hypertension. The
two main classes that make up this ensemble are called " sick " for photographs of sick
patients and "Normal " for images of healthy patients.

The data base includes 4865 retinal pictures in total, varying in shape and length, created
as follows:

* 1556 photos for the "Normal " class; 3309 photos for the "glaucoma " class. (see Fig.5)

Dataset Representation

= Normal
30001 W Sick

Normal
Images

Glaucoma
Images

Sick

Fig.5. Examples of new publicly available dataset (KAGGLE-Data). Normal and glaucoma
fundus images

6.2. Dataset Preparation

Before feeding data into the CNN (U-Net), image processing techniques must be
applied to ensure the data is suitable for building an effective deep learning model. In
our work, data preparation involves three main steps:

Preprocessing and spliting dataset
Images are processed to enhance clarity and compatibility with the model. This step
includes resizing, grayscale conversion, and thresholding (see Fig.6 a).
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The dataset was divided into two sets: a training set (80%) containing 3891 images,
and a test set (20%) containing 974 images (see Fig.6 b).

processed dataset

Preprocessing

Split

. ‘l Resizing

Train Test

Thresholding} \
" -~ @ -~ .
Processed
Dataset
a

Fig.6 : a) step of processing includes resizing, grayscale conversion, and thresholding
b) Splitting of dataset

Dataset-Augmentation

Data augmentation addresses overfitting issues by increasing the
dataset size. The dataset provided by Kaggle is imbalanced. To balance it,
data augmentation is necessary. The following techniques were applied to
both the training and test sets (see Fig 7.a, 7.b):
Image normalization
Image rotation
Image flipping (horizontal and vertical)
Image zooming

Fig 7.a: Original image. Fig 7.b: Images after horizontal flip (left) and vertical
flip (right).
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6.3. U-Net Model Creation
The architecture of our model is quite large, so we have illustrated it in the figures
below:

Model: "Classification_Binaire_Unet”

Layer (type) Output Shape Param # Connected to
img_input (InputLayer) [(None, 128, 128, 1 © [1
)]
conv2d (Conv2D) (None, 128, 128, 16 160 ["img_input[@][@]"]
)
dropout (Dropout) (None, 128, 128, 16 © ["conv2d[e][e]"]
)
conv2d_1 (Conv2D) (None, 128, 128, 16 2320 ["dropout[@][e]']
)
max_pooling2d (MaxPooling2D) (None, 64, 64, 16) © ['conv2d_1[@][0]"]
conv2d_2 (Conv2D) (None, 64, 64, 32) 4640 ['max_pooling2d[@][e]"]
dropout_1 (Dropout) (None, 64, 64, 32) @ ['conv2d_2[@][0]"]
conv2d_3 (Conv2D) (None, 64, 64, 32) 9248 ['dropout_1[@][0]"]
max_pooling2d_1 (MaxPooling2D) (None, 32, 32, 32) @ ["conv2d_3[e][e]"]
conv2d_4 (Conv2D) (None, 32, 32, 64) 18496 [ 'max_pooling2d_1[@][@]"]
dropout_2 (Dropout) (None, 32, 32, 64) @© ["conv2d_4[e][e]"']
conv2d_transpose_3 (Conv2DTran (None, 128, 128, 16 2064 ["conv2d_15[@][0]"]
spose) )
concatenate_3 (Concatenate) (None, 128, 128, 32 @ ["conv2d_transpose_3[8][@]",
) ‘conv2d_1[e][@]"]
conv2d_16 (Conv2D) (None, 128, 128, 16 4624 ["concatenate_3[@][e]"]
)
dropout_8 (Dropout) (None, 128, 128, 16 © ["conv2d_16[@][@]"]
)
conv2d_17 (Conv2D) (None, 128, 128, 16 2320 ["dropout_8[@][©] "]
)
fc_1 (Flatten) (None, 262144) 8 ["conv2d_17[@][e]"]
lyaer_8 (Dense) (None, 64) 16777280 ['fc_1[e][e]"]
dropout_2 (Dropout) (None, 64) <] ['lyaer_8[@][e]"]
predictions (Dense) (None, 2) 13e ["dropout_9[@][@] "]

Total params: 18,718,210
Trainable params: 18,718,210
Non-trainable params: @
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6.4. Performance Metrics

Performance metrics are used to evaluate learning algorithms and are a crucial aspect
of machine learning. Evaluating the performance of a classification system is a very
important phase, as it reflects the reliability of the proposed system.
In medical applications, overall accuracy and error rate alone are not sufficient to
assess performance.

In this work, we analyzed the behavior of our U-Net classifiers by applying
several performance metrics to better evaluate the system and understand its behavior.
The adopted metrics are defined as follows [23]:

Confusion matrix

The confusion matrix allows the performance of each class to be evaluated
individually. It is a matrix with dimensions equal to the number of classes

Accuracy (Correct Classification Rate)

Accuracy is the most straightforward and natural indicator for evaluating the
performance of a classification system. It represents the percentage of correctly
identified instances by the system and is easy to calculate [23].

number of correctly identified elements __ 100+(TP+TN) (4)
total number of elements TP+FP+TN+FN

Accuracy (ccr) =

Precession (Prec)

The percentage of instances classified as positive that are actually positive [71].

100+TP
TP+FP

Prec =

®)

Recall
The percentage of positive instances that are correct8ly classified by the model [71]

100*TP
TP+FN

Recall = (6)
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F-Measure (F1 Score)

This metric is used to calculate the balance between precision and recall. It is given
by the equation below [71]:

Fp = (1+B%)-precurecal) @)

((B2*prec)+recall)

The parameter B allows weighting either precision or recall; it is generally set to 1.

7. Simulation Results and Discussion

Before experimenting with the final model designed for intraocular hypertension
classifiers, we conducted several parametric tests on two models: U-Net and VGG16,
then compared their results. Table.1 presents the results obtained by our U-Net model
on three different datasets, each with varying image sizes. In each case, accuracy and
loss values were calculated, along with the execution time. These measurements help
evaluate both the quality and speed of the results achieved for the different
classification tasks performed.

Table .1: Representation of the three different datasets.

Number Number
Diseased | Normal Batch
of of . Accuracy | Loss Time
Class Class ) Size
Images Iterations
Datase 1h20
7492 1098 6394 100 80 99% 0.024 )
tl min
Datase
. 10865 6309 4556 100 80 81% 0.40 2h
Datase 25
4865 3309 1556 100 80 92% 0.19 ]
t3 Min
8.1. Presentation of obtained Performance

To visualize the performance of our deep learning U-Net model over time during
training, we created graphs for Accuracy, Loss, Recall, Precision, and AUC.(see Fig 8)
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Accuracy (score) and Loss

UNET Classification : Accuracy & Validation Accuracy

Accuracy

) 20 40 60 80 100 120 140
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Fig 8 : Accuracy (Score) curve of the U-Net model over 150 epochs.

After examining the results shown in Fig.8, we observe that the accuracy curves for
both the training and test sets gradually increase as the number of epochs grows. This

indicates that the model is learning new information with each epoch.

Although the training set accuracy reaches a high maximum of 92%, the test set
shows a slightly lower accuracy, peaking at 86%. This may suggest that the model is
overfitting to the training data and does not generalize well to new data. It is
important to note that this overfitting could be due to the relatively small size of the
dataset used for this project (about 4,865 images), rather than an inherent weakness of

the model.

UNET Classification :

Loss & Validation Loss

— train
val

Fig 9 : Loss curve of the U-Net model over 150 epochs.

14
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After analyzing Fig.9, we can observe that the loss curves for both the training and
test sets decrease significantly as the number of epochs increases. The initial training
loss was around 0.3, but it quickly dropped to a final value of 0.19 after 150 epochs.
Similarly, the test loss also gradually decreased, reaching a final value of 0.28 at the
same epoch.

This suggests that the model was trained effectively and its performance steadily
improved over time. The low loss rates for both training and test sets indicate that the
model is capable of providing accurate predictions for both datasets, with minimal
classification errors.

e Precision, Recall, and AUC

Modele UNET: Precision & Validation Precision Modele UNET: Recall & Validation Recall

- train

Precision

Epoch

Fig.10 : Precision curve of the U-Net Fig.11: Recall curve of the U-Net
model model

Modele UNET: AUC & Validation AUC

Fig.12: AUC curve of the U-Net model.
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After careful evaluation of the results presented in the previous figures, we observe
that the trends of the curves are similar and upward. The metrics (Recall, Precision,
and AUC) steadily improve over the epochs for both datasets (training and testing).
This can be an important indicator of the model’s effectiveness, as these metrics
reflect its ability to provide accurate predictions on new data.(see Fig. 10,11,12)

Classification Report

To comprehensively evaluate our model’s performance, we need to analyze precision,
recall, and F1 score through a classification report, as shown in Fig.13:

precision recall fil-score support

malade 0.638 0.68 0.68 2647
normale 0.31 0.31 0.31 1244
accuracy 0.56 3891
macro avg 0.50 0.50 0.50 3891
eighted avg 0.56 0.56 .56 3891

Fig.13: Classification report.

When evaluating the classification report results of our U-Net model, we note that the
performance varies between the two classes. Indeed, the diseased class has a recall,
precision, and F1-score of 0.68, indicating that the model is reasonably able to
identify diseased cases with 68% accuracy. However, the normal class has very low
recall, precision, and F1-score values of 0.31, suggesting that the model struggles to
correctly identify this class.

This may be due to several factors, such as imbalances in the dataset or increased
complexity in distinguishing the normal class. It is important to note that the support
for the diseased class (2,647) is significantly higher than that of the normal class
(1,244), which may also influence classification performance.

Confusion matrix

To understand the types of errors made by our classification model, we will use the
confusion matrix, which provides a summary of the prediction results.
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Confusion matrix

1800
1600
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normale 856 388

malade normale
Predicted label

Fig.14: confusion Matrice.

Based on the confusion matrix obtained for our classification model, the performance
for the diseased and normal classes can be analyzed as follows: the model was able to
correctly identify a large number of diseased cases (TP = 1801). However, the model
had a significant number of false positives (FP = 846), meaning it misclassified many
normal cases as diseased.

Furthermore, for the normal class, the model misclassified a large number of normal
cases as diseased (FN = 856), indicating difficulty in correctly identifying this class.
Additionally, the number of correctly identified normal cases (TN = 388) is very low
compared to the total number of normal cases.

7.1. Comparison of Results Between U-Net and VGG16 Networks

After training our two models, we will discuss the results shown in Fig.15and 16
below:

Epoch 1/158

77177 [ ] - 12s 153ms/step - loss: ©.2885 - accuracy: 0.8791 - precision: 0.8791 - recall: 0.87
Epoch 2/158

77177 [ ] - 11s 148ms/step - loss: 9.2909 - accuracy: 0.8743 - precision: ©.8743 - recall: 0.87
Epoch 149/136

77/77 [==============================] - 125 153ms/step - loss: 8.2164 - accuracy: 8.989%5 - precisicn: 2.9895 - recall: @.!
Epoch 158/158

77/77 [s=========== === 1 - 125 133ms/step - loss: ©.1992 - accuracy: 8.9131 - precision: 8.9131 - recall: 8.4

Fig.15: Training results of the U-Net model.
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Epoch 1/158
77/77 [

Epoch 2/150

Epoch 146/150

77177 [
Epoch 147/15@

77/77 [==

] - 155 197ms/step - loss:

] - 155 19@ms/step - loss:

====] - 22s 198ms/step -

====] - 155 191ms/step -

loss: 0.7014 -

loss: ©.6328 -

0.6260 -

8.6336 -

accuracy: ©.6805 - precision: 0.6805 -

accuracy: 0.6712 -

accuracy:

accuracy:

0.6667 - precision: 0.6689

0.6805 - precision: ©.6805

precision: 0.6712 -

recall: 0./

recall: @.|

Fig.16: Training results of the VGG16 model.

a) The following tables show the training results of our two models for the first and
last iterations:

. Iteration 1:

Table 2: Training results of the two models for iteration 1.

Va
. Val Val Val Val
Accuracy | Loss | Precision | recall | Auc | accurac
loss | precision | recall | AUC
y
U-Net 0.87 0.28 0.87 0.87 0.94 0.78 0.4 0.78 0.78 0.88
VGG16 0.6 0.70 0.66 0.66 0.68 0.69 0.6 0.69 0.68 0.68
e |tération 150 :
Table 3: Training results of the two models for iteration 150.
Val Val Val Val Val
Accuracy | Loss | Precision | recall | AUC .
accuracy | loss | precision | recall | AUC
U-Net 0.91 0.1 0.91 091 | 097 | 08 |02 | 08 | 0.88 | 0.95
VGG16 | o068 0.6 0.68 068 | 068 | 069 | 05| 069 | 068 | 068

After analyzing the performance of the U-Net and VGG16 models shown in Tables 2
and 3, we conclude that the performance metrics of the U-Net model steadily increase
with the number of epochs, indicating that the model continues to learn and improve
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as training progresses. In contrast, the performance metrics of the VGG16 model
show little increase over the epochs and remain almost stable, suggesting that the
model quickly reaches a performance plateau.

b) The following figures display the curves of the performance metrics Recall,
Precision, and AUC for the U-Net and VGG16 models:

Comparaison entre UNet et VGG16_AUC Comparaison entre UNet et VGG16_Accuracy
| — uner — UNET
0.90 VGG16 VGG16

0.80

0.75

Accuracy

"J\Nﬂ/‘r /\\ M‘IMM:’

0.704 0.70
0.65
0.65
0.60
0 20 40 60 80 100 120 140 0 20 20 60 80 100 120 140
Epochs Epochs
Figl7: AUC of U-Net et VGG16 Fig.18: Accuracy of U-Net et VGG16
Comparaison entre UNet et VGG16_Precision Comparaison entre UNet et VGG16_Recall
— UNET — UNET
o VGG16 050 VGG16
075 075
é 0.70 'M‘ A M\’/\Ml g 'A
E] M ) A My
K
0.65 J V l\/ w
065
0.60
0.60
0551 : : > : 3 ;. -
0 20 40 60 80 loo 120 140 0 20 40 60 80 100 120 140

Epochs Epochs

Fig.19: Précision du modele U-Net et VGG16. Fig.20: Recall du modele U-Net et
VGG16.

Based on the obtained results, it is clear that the performance differs between the two
networks, with U-Net performing better. The curves show that the VGG16 model is
more stable, with performance stabilizing more quickly, although at a lower level.

This can be explained by several possible reasons, notably the specific design of the
U-Net model for medical image segmentation. The skip connections used by U-Net to
merge features at different resolution levels may enhance its ability to capture finer
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Sstructures in images, which partly explains why the model’s performance continues to
improve with more training epochs.

In contrast, the VGG16 model uses a deeper architecture with smaller convolutions
but fewer complex feature combinations. It is therefore possible that the problem is
more challenging for VGG16, which may explain why its performance plateaus
earlier.

7.2. Test Results

Probability of malady: 39.55654501914 Probability representation

Probability of normalcy

EEN Probabili
EE Probabili

Probability of normalcy: 60.263627767

Probability of malady
[ResuLTAT ]

le patient est malade 4@
1.0 4

0.8

o
o

Membership

o
»

o
N

—— malade stade 1
malade stade 2

—— malade stade 3

0.0 -
o 20 40 60 80 100

Diagnostic

Fig.21: Example of a result for a diseased patient.

Probability of malady: 20.920321345319085%

RESULTAT:

Probability of normalcy: 8.674532413482674

Fig 22: Example of a result for a normal patient.



12 21

In this paper, we presented our proposed methodology to design a classification
model for the stages of intraocular hypertension, using a convolutional neural network
(CNN) specifically U-Net combined with the concept of fuzzy logic. We also
reviewed the state of the art regarding CNN applications in medical imaging.

To implement our methodology, we relied on a variety of hardware and
software tools. Then, the results obtained by our U-Net model were presented and
compared with those from the VGG16 network. This comparison showed that the U-
Net model enables precise and reliable classification of the different stages of
intraocular hypertension, representing a significant improvement over traditional
methods.

Finally,this work creates numerous research opportunities. More research is
required to refine some of the concepts that we have introduced.
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