A New Fuzzy Clustering Validity Index Based on
Kullback-Leibler Divergence

Abstract. Determining the optimal number of clusters, a critical step in clustering analysis,
is typically guided by domain expertise or assessed through clustering validity indexes. This
study evaluates the effectiveness of such indexes for centroid-based partitional clustering
algorithm. We propose anew clustering validity index, termed KLDCVI, which mitigates
instability by incorporating Kullback-Leibler Divergence. This adjustment allows KLDCVI
to tolerate closely allocated centroidsto a reasonable degree, enhancing robustness in
evaluation. We assess the performance of KLDCVI against existing validity indexes by
applying the fuzzy c-means algorithm to real-world images. Experimental results demonstrate
that KLDCVI achieves superior accuracy and reliability compared to conventional indexes.

Keywords:Clustering validity index, Fuzzy c-means method, KuL Lback-
Leibler Divergence.

1 Introduction

Clustering is an unsupervised learning technique and fundamental in image
segmentation. It is used to partition in groups by analyzing similarities among their
attributes. It organizes homogeneous pixels into cohesive clusters while separating
heterogeneous pixels into distinct groups. The core objective of clustering is to
efficiently generate well-defined and meaningful clusters, making it vital for image
processing. Since its introduction as intelligent techniques based on fuzzy theory,
Fuzzy C-Means (FCM) methods are widely studied and used as a powerful tool in a
wide range of applications(1)(2)(3) and successfully applied in medical image
segmentation(4)(5) (6)(7)(8). It was first proposed by Dunn(9) and improved by
Bezdek (10). The main idea of FCM is to use fuzzy membership to cluster iteratively
image into subsets, the fuzzy membership allows each pixel to belong to clusters with
different degrees. To enhance FCM performance, many authors have focused their
researches for developing new ideas or techniques to overcome some limitations such
as noise and initialization sensitiveness, high-time complexity and use of Euclidian
distance as the similarity criterion (11)(12) (13).

To overcome these limitations, Ahmed in (4) adds a spatial constraint by using the
labels in the neighborhood of a pixel to compute its label, but it was very time-
consuming, treated later in (14) given birth to two variants of algorithms by
simplifying this proposed objective function. Kang (15) modified the objective
function in the conventional FCM and introducing an adaptive weighted averaging
filter to indicate the spatial influence of the neighboring pixels on the central pixel.
Kernels methods are successfully incorporated in FCM to deal with corrupted data by
noise or outliers (16). To calculate distance between the examples and the cluster
centers, Chen and Zhang (17) apply the idea of kernel methods and demonstrates that
such distances are more robust to noises. In (16), Zanaty et al. present an alternative
Kernelized FCM (KFCM) for automatic magnetic resonance image (MRI)



segmentation and incorporate spatial information into the membership function
(Spatial KFCM). Authors in (18) propose Multiple KFCM (MKFCM) algorithm that
provides a new flexible vehicle to fuse different pixel information in image-
segmentation problems. This algorithm was enhanced later by incorporating spatial
information (Spatial MKFCM)(19) (20). Hybrid clustering methods are also used to
enhance FCM effectiveness like Evolutionary algorithms, deformable model, neural
networks and more techniques (21) (22) (23) (24)(25) (26) (27) (28)(8)

Recently many researchers introduce Kullback—Leibler divergence (KL-
Divergence)(29) in FCM in different ways. Zou et al. in (30) surrogate the Euclidian
distance by the KL- Divergence in the objective function, while in (31), authors
modify the objective function by incorporating weighted membership KL-Divergence
and local data information. Authors in (32) use the KL-Divergence to handle the
memberships. First, they classified the image with distinct fuzzy clustering methods
and then the resulting soft clustering are aggregated by an objective function based on
fuzzy KL-Divergence. Authors confirm that the proposed method gives good results
compared with other methods.

To achieve the clustering process, most of these approaches require the appropriate
number of clusters to start with. But for new or unknown data this information is
crucial and the segmentation accuracy depends highly on it and when it is incorrect
serious problems may arise. To get the right number of clusters, many studies deal
with this problem which is known as cluster validity index. Since images lack prior
reference information, determining the optimal number of clusters remains a
significant challenge. In this work we develop a novel fuzzy index based on KL-
Divergence that allows getting the right number of clusters for a given image.

2 FCM algorithm

The FCM algorithm belongs to the family of clustering algorithms based on fuzzy
function optimization. The standard version is firstly introduced by Dunn and
generalized by Bezdek (10). It has undergone many interventions leading to a lot of
algorithms. All these algorithms are considered as soft clustering in the way that each
element of the data to be clustered may belong to more than one cluster with deferent
degrees of membership. The objective function is optimized in an iterative way and at
the end of the process; each element is assigned to the cluster in which it has the
highest membership.

Let I = (x4, X3, ...,Xy) an image of N pixels to be clustered into C (2 <
K « N) clusters, where x; represents data features. The standard FCM objective
function is formulated as (10):
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U is the memberships degrees matrix, c; is the ith center and C is the total
number of clusters centers. m € [1, oof is to control fuzziness, dz(xj,ci) is the
grayscale Euclidean distance and u; j is the membership degree of the pixel j in the ith
cluster c;.

An alternate optimization is applied on the membership function U and
clusters centers using the following formulas:
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From a random initialization of clusters centers and using formulas (1.2) and
(1.3), FCM algorithm recomputed clusters centers until no improvement of these
centers. Once the clusters centers fixed, the algorithm assign each pixel j of the image
to a cluster having maximum fuzzy membership degree.

3 Cluster validity index for fuzzy clustering algorithms

In the field of cluster analysis, cluster validity is a very important and large topic; it
began to appear in the 1980s (33)(34). The main purpose of any cluster validity index
(CV]) is to find the optimal number of clusters that corresponds to the natural
partition of the given data, image in our case. CVI focuses on incorporating measures
of compactness and separation (35) (36) (37) (38). In image segmentation field,
compactness measures the concentration of pixels belonging to the same cluster
around the cluster center while separation represents isolation of clusters from each
other. In this section, we will list some popular CVI.

(1) The partition coefficient Index (PCI) and partition entropy Index(PEI) are

proposed by Bezdeck (39) in association with FCM Algorithm
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PCI is a max optimum index and PE/ is min optimum index.

(i1) To reduce the monotonic tendency with C (number of cluster) of the both
index PCI and PEI, Dave (40) proposed Modification of PCI (MPC). This
index is defined as
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(ii1) Xie and Beni (41) defied a new CVI called in this paper XBI. It take
account the fuzzy membership degrees and the structure of the data to be
clustered in order to have compact and well-separated clusters. XB/ is
defined as

XBI = ]’_"(U’ %) (1.7)
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where J,, is the fuzzy objective function of the FCM algorithm. XBI is a
min optimum index.
(iv) In the same way of XBI, Fukayama and Sugno (42) defined another CVI

called FSI as (FSI is a min optimum index):
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where X = % , the mean of the whole data to be clustered.

(v) The Separation-Compactness Index (SCI) is a fuzzy clustering validity
metric that balances intra-cluster compactness and inter-cluster separation.

SCI is min optimum index. It's typically defined as:
UcCX
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(vi) The Davies-Bouldin Index (DBI) measures the compactness and separation
of clusters. It is defined as:

PEI=% L #J\ D
i=
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Where S; is the mean distance between the center of the cluster 7 and all the
points belonging to this cluster and D;; denotes the distance between the
centroids of the clusters / and J. DB/ is min optimum index.

(vi))The MBMF (Mean Bounded Membership Function) is a fuzzy max
optimum clustering validity index that evaluates the crispness or
definiteness of the clustering results. It is defined as

1 max
MBMF:Ez;j.V:1 i Wi (1.11)

(viii) IMI is also a min optimum index for evaluating fuzzy clustering
results. It inspired from WLI. It deal with impact of the uniform effect
on the separation and compactness metrics
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The characteristics of the clustering validity index (CVIs) discussed above
revolve around their ability to measure the quality of clustering by evaluating two
main aspects: compactness and separation. Compactness refers to the degree to which
data objects within the same cluster are similar and closely packed, typically
measured using intra-cluster distances such as between pairs of objects or between
each object and the cluster centroid. In contrast, separation assesses how well distinct
clusters are isolated, often using inter-cluster distances between centroids or between
objects from different clusters. CVIs mentioned above incorporate fuzzy membership
degrees and structural properties of clusters. Some CVlIs, like PC and PE, focus solely
on compactness, whereas others, like DBI, XBI, FSI, and SCI, account for both
compactness and data structure but may not address compactness—separation trade-
offs at the cluster level. CVIs also differ in how they treat centroid distances: PBMF
emphasizes maximum centroid distance (which can misrepresent image clustering),
while XBI and CSI focus on the minimum. Simpler CVIs like PC and PE use
membership degrees alone, whereas advanced ones also incorporate distance metrics
averaged like FSI, minimal like XBI and CSI, or maximal (MBMF). Typically, CVIs
are used as post-processing tools independent of the clustering method, helping
determine the optimal number of clusters by identifying the value of number of
clusters where the CVI reaches its maximum (PC, Dunn, SCI, WLI, IMI, ...) or
minimum (PE, DBI, XBI, FSI, CS], ...).

For convenience, this paper denotes a larger-the-better CVI as CVI" and a smaller-
the-better CVI as CVI.

4 The Proposed CVI

We propose a novel cluster validity index based on the Kullback-Leibler Divergence
named KLDCVI (Kullback-Leibler Divergence-Cluster Validity Index). The main
purpose of KLDCVI is to evaluate the fuzzy clustering results considering the
Kullback-Leibler Divergence between clusters in the separation metric.

4.1 Kullback-Leibler Divergence

Kullback-Leibler Divergence (KLD) is a measure of how one probability distribution
differs from a second, reference probability distribution. It quantifies the "distance"
between two distributions in terms of information loss when using one to approximate
the other (43). For two discrete probability distributions P and Q the Kullback—
Leibler Divergence of P with respect to Q is defined by :

P

D (PIIQ) = ZP(i)log@ (1.13)


https://fr.wikipedia.org/wiki/Divergence_de_Kullback-Leibler

4.2 Structure of KLDCVI

In a general context, clustering is a process of grouping or classifying a collection of
objects into homogeneous "clusters." Ideally, members of the same cluster are
characterized by strong similarity to each other and strong dissimilarity to members of
other clusters. In fuzzy classification methods such as FCM (Fuzzy C-Means) and its
variants, each individual (a pixel in the case of images) is assigned a membership
degree indicating its association with each cluster. This can be interpreted as the
probability of belonging to a given cluster. Therefore, we will leverage this
measure to compute the divergence between clusters resulting from a classification.
By maximizing this measure, we ensure separation between the clusters.

Like conventional CVIs, the KLDCVI index is defined as the ratio between fuzzy
compactness and separation measures. The distinguishing characteristic of KLDCVI
lies in its explicit incorporation of Kullback-Leibler Divergence into the separation
metric.

4.2.1 Separation measure

The notion of KLD divergence is based on two probability variables, P and Q. In our
application, the proposed measure defines Pand Qas follows: For each
pixel j belonging to cluster i, if we define P;;as the membership probability of
pixel j in cluster #, then P;; is simply U;; (from FCM algorithms), i.e., Pi; = U;;.
Similarly, we define Q;; as the sum of membership probabilities of pixel j to all other
clusters (excluding cluster 7). Thus, Q;; represents the complement of the pixel’s
membership probability in cluster i, meaning:

0ij=1-P;; (e, Qij=1 - Uy;) since the sum of a pixel’s membership degrees across
all clusters must equal 1. The figure below illustrates the principle of separation
measure. The separation measure must ensure the isolation of the cluster C; over the
rest of clusters.

—

Fig.1. Principle of KLD-CIV separation measurement

The divergence of cluster i relative to the remaining clusters is calculated using the
formula:



N U
keld; = Z 8jUs * Log | 1= (1.14)
Jj=1
where 6;; = {1 if Uy; = Max(Uy) i=1,..,C
Y 0 otherwise

According to this presentation, the separation measure is defined as the average
divergence of the C clusters in the partition. This new separation metric is

c
1
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4.2.2 Compactness measure
The fuzzy compactness metric serves as a fundamental criterion in numerous CVIs,
such as XBI, FSI, WLI and IMI indexes. Conventionally, this metric is

mathematically defined as the aggregate compactness measure across all clusters. It is
defined as:
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Building upon the mathematical foundations established in Equations (15) and (16),
the KLDCVI index is formally defined as:
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Like other CVIs, the KLDCVI assesses the compactness-separation trade-off in
clustering. The numerator in Eq. (1.19) computes the average fuzzy distance of data
points to all cluster centroids, smaller values indicate tighter, more compact clusters.
This principle aligns with other CVlIs, such as XBI, SCI, and MBMF.

The denominator measures cluster separation, where a larger value signifies more
distinct, well-separated clusters. Thus, lower KLDCVI values correspond to better
clustering performance, as they reflect higher compactness and greater separation.

5 Experiments

To demonstrate the effectiveness of our KLDCVI index, several experiments are
conducted on different images. In these experiments, the images were clustered using
FCM with varying numbers of clusters. The clustering outcomes were assessed using
a cluster validity index (CVI) to determine the optimal number of clusters. The



proposed KLDCVI was compared against eight established indexes mentioned in
section (3).

First, the proposed CVI was tested on synthetic image. This later contains 6 clusters
(Fig.2). The proposed CVI was also tested on four remote sensing images from a prior
study (35) (Fig. 3). Each image measures 128 x 128 pixels, comprising 16,384 3D
data points with 24-bit RGB values (3D features) for clustering.

In (35), domain experts determined the number of clusters by identifying distinct
objects—such as roads, sandbanks, sea areas, rooftops, and aircraft—that clustering
should resolve. Based on this, Img2 and Img4 were assigned 3—4 clusters, while Img3
and Img5 were assigned 4-5 clusters. Furthermore, KLDCVI was tested on medical
images (Fig.4). Img6 and Img7 were assigned 3-5 clusters where Img8 is assigned 3-4
clusters.

For computational efficiency, all images were converted to grayscale prior to

clustering.

Imgl
Fig.2. Synthetic image

Img3 Img4
Fig.3. Remote sensing images

Img6 Img7 Img8

Fig.4. Medical images
Table 1 bellow presents the result obtained for image Img6. For this image KLDCVI
find the right number of cluster with DBI, PCI, MPC, XBI and MBMF. Table 2
provides results obtained on all images



Table 1. Clustering result metrics for Img6

Bold numbers presents optimum values
DBI- PCI* PEI- MPC* XBI- FSI- MBMF* IMI- KLDCVI-
.0000 0.0000 1.0000 0.0000 0.8652 0.0000 0.0000 .0000 1.0000
.0000 1.0000 0.0000 0.9683 0.0910 0.9933 1.0000 .9947 0.0981
L2774 0.8877 0.2485 1.0000 0.0000 1.0000 0.8593 .0000 0.0006
.2871 0.7546 0.5271 0.9866 0.2469 0.9415 0.7362 .9702 0.0000
.4198 0.5139 0.9635 0.9135 1.0000 0.8212 0.5229 .9036 0.0273

Table 2. cluster numbers decided by CVIs

oo w0
oo oo
cor oo

Image | #C | DBI | PCI | PEI | MPC | XBI | FSI | MBMF | IMI | KLDCVI
Imgl 6 - 6 6 6 6 6 6 6 6
Img2 | 3.4 3 2 2 3 3 3 2 2 3
Img3 | 4.5 3 3 2 3 3 2 3 4 3
Imgd | 34 2 2 2 2 2 3 2 4 2
Img5 | 4.5 3 2 2 3 3 6 2 2 4
Img6 | 3.5 3 3 3 4 4 2 3 2 5
Img7 | 3.5 3 3 3 3 3 2 3 2 3
Img8 | 34 3 3 2 3 3 6 3 2 3

We Remarque that our KLDCVI index detects the right number of clusters for 6
images over 8. This confirms the robustness of our CVI.

6 Conclusion

FCM is widely used in lots of fields. But it needs to preset the number of clusters and
is greatly influenced by the initial cluster centroids. This paper presents a method for
determining the number of clusters by using of FCM algorithm. In this method, a
Kullback-Leibler Divergence is used for developing a new cluster validity index
termed KLDCVI. This CVI can estimates the right number of clusters for a given
image. This new fuzzy clustering validity index was put forward based on fuzzy
compactness and separation based on Kullback-Leibler Divergence so that the
clustering result is closer to global optimum. The index is robust and interpretable
when the number of clusters tends to that of objects in the dataset. The contributions
are validated by experimental results.
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