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Kullback-Leibler Divergence 

Abstract. Determining the optimal number of clusters, a critical step in clustering analysis, 

is typically guided by domain expertise or assessed through clustering validity indexes. This 
study evaluates the effectiveness of such indexes for centroid-based partitional clustering 
algorithm. We propose a new clustering validity index, termed KLDCVI, which mitigates 
instability by incorporating Kullback-Leibler Divergence. This adjustment allows KLDCVI 
to tolerate closely allocated centroids to a reasonable degree, enhancing robustness in 
evaluation. We assess the performance of KLDCVI against existing validity indexes by 
applying the fuzzy c-means algorithm to real-world images. Experimental results demonstrate 
that KLDCVI achieves superior accuracy and reliability compared to conventional indexes. 
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1 Introduction 

Clustering is an unsupervised learning technique and fundamental in image 
segmentation. It is used to partition in groups by analyzing similarities among their 
attributes. It organizes homogeneous pixels into cohesive clusters while separating 
heterogeneous pixels into distinct groups. The core objective of clustering is to 
efficiently generate well-defined and meaningful clusters, making it vital for image 
processing. Since its introduction as intelligent techniques based on fuzzy theory, 
Fuzzy C-Means (FCM) methods are widely studied and used as a powerful tool in a 
wide range of applications(1)(2)(3) and successfully applied in medical image 
segmentation(4)(5) (6)(7)(8). It was first proposed by Dunn(9) and improved by 
Bezdek (10). The main idea of FCM is to use fuzzy membership to cluster iteratively 
image into subsets, the fuzzy membership allows each pixel to belong to clusters with 
different degrees. To enhance FCM performance, many authors have focused their 
researches for developing new ideas or techniques to overcome some limitations such 
as noise and initialization sensitiveness, high-time complexity and use of Euclidian 
distance as the similarity criterion (11)(12) (13). 
To overcome these limitations, Ahmed in (4) adds a spatial constraint by using the 
labels in the neighborhood of a pixel to compute its label, but it was very time-
consuming, treated later in (14) given birth to two variants of algorithms by 
simplifying this proposed objective function.  Kang (15) modified the objective 
function in the conventional FCM and introducing an adaptive weighted averaging 
filter to indicate the spatial influence of the neighboring pixels on the central pixel. 
Kernels methods are successfully incorporated in FCM to deal with corrupted data by 
noise or outliers (16). To calculate distance between the examples and the cluster 
centers, Chen and Zhang (17) apply the idea of kernel methods and demonstrates that 
such distances are more robust to noises.  In (16), Zanaty et al. present an alternative 
Kernelized FCM (KFCM) for automatic magnetic resonance image (MRI) 



segmentation and incorporate spatial information into the membership function 
(Spatial KFCM). Authors in (18) propose Multiple KFCM (MKFCM) algorithm that 
provides a new flexible vehicle to fuse different pixel information in image-
segmentation problems. This algorithm was enhanced later by incorporating spatial 
information (Spatial MKFCM)(19) (20). Hybrid clustering methods are also used to 
enhance FCM effectiveness like Evolutionary algorithms, deformable model, neural 
networks and more techniques (21) (22) (23) (24)(25) (26) (27) (28)(8) 
Recently many researchers introduce Kullback–Leibler divergence (KL-
Divergence)(29) in FCM in different ways. Zou et al. in (30) surrogate the Euclidian 
distance by the KL- Divergence in the objective function, while in (31), authors 
modify the objective function by incorporating weighted membership KL-Divergence 
and local data information. Authors in (32) use the KL-Divergence to handle the 
memberships. First, they classified the image with distinct fuzzy clustering methods 
and then the resulting soft clustering are aggregated by an objective function based on 
fuzzy KL-Divergence. Authors confirm that the proposed method gives good results 
compared with other methods. 
To achieve the clustering process, most of these approaches require the appropriate 
number of clusters to start with. But for new or unknown data this information is 
crucial and the segmentation accuracy depends highly on it and when it is incorrect 
serious problems may arise. To get the right number of clusters, many studies deal 
with this problem which is known as cluster validity index. Since images lack prior 
reference information, determining the optimal number of clusters remains a 
significant challenge. In this work we develop a novel fuzzy index based on KL-
Divergence that allows getting the right number of clusters for a given image.    
 

2 FCM algorithm 

The FCM algorithm belongs to the family of clustering algorithms based on fuzzy 
function optimization. The standard version is firstly introduced by Dunn and 
generalized by Bezdek (10). It has undergone many interventions leading to a lot of 
algorithms. All these algorithms are considered as soft clustering in the way that each 
element of the data to be clustered may belong to more than one cluster with deferent 
degrees of membership. The objective function is optimized in an iterative way and at 
the end of the process; each element is assigned to the cluster in which it has the 
highest membership. 

Let 𝐼 = (𝑥1, 𝑥2, … , 𝑥𝑁) an image of N pixels to be clustered into C (2 <𝐾 ≪ 𝑁) clusters, where 𝑥𝑖 represents data features. The standard FCM objective 
function is formulated as (10): 

𝐽(𝑈) = ∑ ∑ 𝑢𝑖,𝑗𝑚 𝑑2(𝑥𝑗 , 𝑐𝑖)𝑁
𝑗=1

𝐶
𝑖=1  (1.1) 



𝑈 is the memberships degrees matrix, 𝑐𝑖  is the ith center and C is the total 
number of clusters centers. m ∈ [1, ∞[ is to control fuzziness, 𝑑2(𝑥𝑗 , 𝑐𝑖) is the 

grayscale Euclidean distance and 𝑢𝑖,𝑗 is the membership degree of the pixel j in the ith 

cluster 𝑐𝑖. 
An alternate optimization is applied on the membership function 𝑈 and 

clusters centers using the following formulas: 

 𝑢𝑖𝑗 = (𝑑2(𝑥𝑗,𝑐𝑖)) 11−𝑚∑ (𝑑2(𝑥𝑗,𝑐𝑙)) 11−𝑚𝐶𝑙=1                                               (1.2) 

and 

𝑐𝑖 = ∑ (𝑁𝑗=1 𝑢𝑖𝑗)𝑚 .𝑥𝑗∑ (𝑁𝑗=1 𝑢𝑖𝑗)𝑚                                                    (1.3) 

From a random initialization of clusters centers and using formulas (1.2) and 
(1.3), FCM algorithm recomputed clusters centers until no improvement of these 
centers. Once the clusters centers fixed, the algorithm assign each pixel j of the image 
to a cluster having maximum fuzzy membership degree. 

3 Cluster validity index for fuzzy clustering algorithms 

In the field of cluster analysis, cluster validity is a very important and large topic; it 
began to appear in the 1980s (33)(34). The main purpose of any cluster validity index 
(CVI) is to find the optimal number of clusters that corresponds to the natural 
partition of the given data, image in our case.  CVI focuses on incorporating measures 
of compactness and separation (35) (36) (37) (38). In image segmentation field, 
compactness measures the concentration of pixels belonging to the same cluster 
around the cluster center while separation represents isolation of clusters from each 
other. In this section, we will list some popular CVI.        

(i) The partition coefficient Index (PCI) and partition entropy Index(PEI) are 
proposed by Bezdeck (39) in association with FCM Algorithm 𝑃𝐶𝐼 =  1𝑁 ∑ ∑ 𝑢𝑖𝑗2𝐶

𝑗=1
𝑁

𝑖=1                                                                      (1.4) 

𝑃𝐸𝐼 =  1𝑁 ∑ ∑ 𝑢𝑖𝑗𝐶
𝑗=1

𝑁
𝑖=1 𝑙𝑜𝑔(𝑢𝑖𝑗)                                                   (1.5) 

PCI is a max optimum index and PEI is min optimum index. 
(ii) To reduce the monotonic tendency with C (number of cluster) of the both 

index PCI and PEI, Dave (40) proposed Modification of PCI (MPC). This 
index is defined as 



𝑀𝑃𝐶 = 𝐶 ∗ 𝑃𝐶𝐼 − 1𝐶 − 1                                                  (1.6) 

(iii) Xie and Beni (41) defied a new CVI called in this paper XBI. It take 
account the fuzzy membership degrees and the structure of the data to be 
clustered in order to have compact and well-separated clusters. XBI is 
defined as 𝑋𝐵𝐼 =  𝐽𝑚(𝑈, 𝐶, 𝑋)𝑁(𝑚𝑖𝑛𝑖,𝑗‖𝑐𝑖 − 𝑐𝑗‖)                                        (1.7) 

where Jm is the fuzzy objective function of the FCM algorithm. XBI is a 
min optimum index. 

(iv) In the same way of XBI, Fukayama and Sugno (42) defined another CVI 
called FSI as (FSI is a min optimum index): 𝐹𝑆𝐼 =  𝐽𝑚(𝑈, 𝐶, 𝑋) − ∑ ∑ 𝑢𝑖𝑗𝑚‖𝑐𝑗 − 𝑥̅‖2𝐶

𝑗=1
𝑁

𝑖=1                          (1.8) 

where 𝑥̅ = ∑ 𝑥𝑖𝑁𝑖=1𝑁  , the mean of the whole data to be clustered.  

(v) The Separation-Compactness Index (SCI) is a fuzzy clustering validity 
metric that balances intra-cluster compactness and inter-cluster separation. 
SCI is min optimum index. It's typically defined as: 𝑆𝐶𝐼 =  𝐽𝑚(𝑈, 𝐶, 𝑋)∑ ∑ ‖𝑐𝑖 − 𝑐𝑗‖2𝐶𝑗=𝑖+1𝐶𝑖=1                                              (1.9) 

(vi) The Davies-Bouldin Index (DBI) measures the compactness and separation 
of clusters. It is defined as: 

𝐷𝐵𝐼 =  1𝐾 ∑ 𝑚𝑎𝑥𝑖 ≠ 𝑗 (𝑆𝑖 + 𝑆𝑗𝐷𝑖,𝑗 )𝐾
𝑖=1  

         
(1.10) 

Where Si is the mean distance between the center of the cluster I and all the 
points belonging to this cluster and Di,j denotes the distance between the 
centroids of the clusters I and J. DBI is  min optimum index.  

(vii) The MBMF (Mean Bounded Membership Function) is a fuzzy max 
optimum clustering validity index that evaluates the crispness or 
definiteness of the clustering results. It is defined as 𝑀𝐵𝑀𝐹 = 1𝐶 ∑ 𝑚𝑎𝑥𝑖 (𝑈𝑖𝑗)𝑁𝑗=1                                           (1.11) 

 

(viii) IMI is also a min optimum index for evaluating fuzzy clustering 

results. It inspired from WLI. It deal with impact of the uniform effect 

on the separation and compactness metrics 

𝐼𝑀𝐼 =  ∑ ∑ 𝑢𝑘,𝑗𝑚 𝑑2(𝑥𝑗,𝑐𝑖)𝑁𝑗=1∑ 𝑢𝑖𝑗2𝑁𝑗=1𝐶𝑖𝑖=1𝑚𝑖𝑛𝑙≠𝑘 𝛿𝑙,𝑘𝑑2(𝑐𝑙,𝑐𝑘)+ 𝑚𝑒𝑑𝑖𝑎𝑛𝑙≠𝑘 𝛿𝑙,𝑖𝑑2(𝑐𝑙,𝑐𝑘)                 (1.12) 



where 𝛿𝑙,𝑘 = ∑ 𝑢𝑙,𝑗𝑁𝑗=1∑ 𝑢𝑘,𝑗𝑁𝑗=1 . 

               

The characteristics of the clustering validity index (CVIs) discussed above 
revolve around their ability to measure the quality of clustering by evaluating two 
main aspects: compactness and separation. Compactness refers to the degree to which 
data objects within the same cluster are similar and closely packed, typically 
measured using intra-cluster distances such as between pairs of objects or between 
each object and the cluster centroid. In contrast, separation assesses how well distinct 
clusters are isolated, often using inter-cluster distances between centroids or between 
objects from different clusters. CVIs mentioned above incorporate fuzzy membership 
degrees and structural properties of clusters. Some CVIs, like PC and PE, focus solely 
on compactness, whereas others, like DBI, XBI, FSI, and SCI, account for both 
compactness and data structure but may not address compactness–separation trade-
offs at the cluster level. CVIs also differ in how they treat centroid distances: PBMF 
emphasizes maximum centroid distance (which can misrepresent image clustering), 
while XBI and CSI focus on the minimum. Simpler CVIs like PC and PE use 
membership degrees alone, whereas advanced ones also incorporate distance metrics 
averaged like FSI, minimal like XBI and CSI, or maximal (MBMF). Typically, CVIs 
are used as post-processing tools independent of the clustering method, helping 
determine the optimal number of clusters by identifying the value of number of 
clusters where the CVI reaches its maximum (PC, Dunn, SCI, WLI, IMI, …) or 
minimum (PE, DBI, XBI, FSI, CSI, …). 
For convenience, this paper denotes a larger-the-better CVI as CVI+ and a smaller-
the-better CVI as CVI-. 

4 The Proposed CVI 

We propose a novel cluster validity index based on the Kullback-Leibler Divergence 
named KLDCVI (Kullback-Leibler Divergence-Cluster Validity Index). The main 
purpose of KLDCVI is to evaluate the fuzzy clustering results considering the 
Kullback-Leibler Divergence between clusters in the separation metric. 
 
4.1 Kullback-Leibler Divergence 

Kullback-Leibler Divergence (KLD) is a measure of how one probability distribution 
differs from a second, reference probability distribution. It quantifies the "distance" 
between two distributions in terms of information loss when using one to approximate 
the other (43). For two discrete probability distributions P and Q the Kullback–
Leibler Divergence of P with respect to Q is defined by : 𝐷𝐾𝐿(𝑃‖𝑄) = ∑ 𝑃(𝑖)𝑙𝑜𝑔 𝑃(𝑖)𝑄(𝑖)𝑖                                   (1.13) 

https://fr.wikipedia.org/wiki/Divergence_de_Kullback-Leibler


4.2 Structure of KLDCVI 

In a general context, clustering is a process of grouping or classifying a collection of 
objects into homogeneous "clusters." Ideally, members of the same cluster are 
characterized by strong similarity to each other and strong dissimilarity to members of 
other clusters. In fuzzy classification methods such as FCM (Fuzzy C-Means) and its 
variants, each individual (a pixel in the case of images) is assigned a membership 
degree indicating its association with each cluster. This can be interpreted as the 
probability of belonging to a given cluster. Therefore, we will leverage this 
measure to compute the divergence between clusters resulting from a classification. 
By maximizing this measure, we ensure separation between the clusters.  
Like conventional CVIs, the KLDCVI index is defined as the ratio between fuzzy 
compactness and separation measures. The distinguishing characteristic of KLDCVI 
lies in its explicit incorporation of Kullback-Leibler Divergence into the separation 
metric. 

4.2.1 Separation measure  

The notion of KLD divergence is based on two probability variables, P and Q. In our 
application, the proposed measure defines P and Q as follows: For each 
pixel j belonging to cluster i, if we define Pi,j as the membership probability of 
pixel j in cluster i, then Pi,j is simply 𝑈𝑖𝑗  (from FCM algorithms), i.e., Pi,j = 𝑈𝑖𝑗 . 

Similarly, we define Qi,j as the sum of membership probabilities of pixel j to all other 
clusters (excluding cluster i). Thus, Qi,j represents the complement of the pixel’s 
membership probability in cluster i, meaning: 
Qi,j = 1 – Pi,j (i.e., Qi,j = 1 – 𝑈𝑖𝑗) since the sum of a pixel’s membership degrees across 

all clusters must equal 1. The figure below illustrates the principle of separation 
measure. The separation measure must ensure the isolation of the cluster Ci over the 
rest of clusters. 

   

 

 

 

 

 

 

 

 

Fig.1. Principle of KLD-CIV separation measurement 

The divergence of cluster i relative to the remaining clusters is calculated using the 
formula: 
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𝑘𝑙𝑑𝑖 = ∑ 𝛿𝑖𝑗𝑈𝑖𝑗 ∗ 𝐿𝑜𝑔 ( 𝑈𝑖𝑗1 − 𝑈𝑖𝑗)𝑁
𝑗=1                                 (1.14) 

where 𝛿𝑖𝑗 = {1           𝑖𝑓 𝑈𝑖,𝑗 = 𝑀𝑎𝑥(𝑈𝑖𝑗)     𝑖 = 1, … , 𝐶0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                       . 
According to this presentation, the separation measure is defined as the average 
divergence of the C clusters in the partition. This new separation metric is  

𝐾𝐿𝐷𝐼𝑉 =  1𝐶 ∑ 𝑘𝑙𝑑𝑖𝐶
𝑖=1                                                 (1.15) 

4.2.2 Compactness measure  

The fuzzy compactness metric serves as a fundamental criterion in numerous CVIs, 
such as XBI, FSI, WLI and IMI indexes. Conventionally, this metric is 
mathematically defined as the aggregate compactness measure across all clusters. It is 
defined as: 

 

∑ ∑ 𝑢𝑖𝑗𝑚𝑑2(𝑥𝑗, 𝑐𝑖)𝑁𝑗=1∑ 𝑢𝑖𝑗2𝑁𝑗=1
𝐶

𝑖=1                                                  (1.16) 

Building upon the mathematical foundations established in Equations (15) and (16), 
the KLDCVI index is formally defined as: 

𝐾𝐿𝐷𝐶𝑉𝐼 =  ∑ ∑ 𝑢𝑘𝑗𝑚 𝑑2(𝑥𝑗 , 𝑐𝑖)𝑁𝑗=1∑ 𝑢𝑖𝑗2𝑁𝑗=1𝐶𝑖𝑖=1 1𝐶 ∑ 𝑘𝑙𝑑𝑖𝐶𝑖=1                                             (1.17) 

Like other CVIs, the KLDCVI assesses the compactness-separation trade-off in 
clustering. The numerator in Eq. (1.19) computes the average fuzzy distance of data 
points to all cluster centroids, smaller values indicate tighter, more compact clusters. 
This principle aligns with other CVIs, such as XBI, SCI, and MBMF. 
The denominator measures cluster separation, where a larger value signifies more 
distinct, well-separated clusters. Thus, lower KLDCVI values correspond to better 
clustering performance, as they reflect higher compactness and greater separation. 

5 Experiments 

To demonstrate the effectiveness of our KLDCVI index, several experiments are 
conducted on different images. In these experiments, the images were clustered using 
FCM with varying numbers of clusters. The clustering outcomes were assessed using 
a cluster validity index (CVI) to determine the optimal number of clusters. The 



proposed KLDCVI was compared against eight established indexes mentioned in 
section (3). 
First, the proposed CVI was tested on synthetic image. This later contains 6 clusters 
(Fig.2). The proposed CVI was also tested on four remote sensing images from a prior 
study (35) (Fig. 3). Each image measures 128 × 128 pixels, comprising 16,384 3D 
data points with 24-bit RGB values (3D features) for clustering. 
In (35), domain experts determined the number of clusters by identifying distinct 
objects—such as roads, sandbanks, sea areas, rooftops, and aircraft—that clustering 
should resolve. Based on this, Img2 and Img4 were assigned 3–4 clusters, while Img3 
and Img5 were assigned 4–5 clusters. Furthermore, KLDCVI was tested on medical 
images (Fig.4). Img6 and Img7 were assigned 3-5 clusters where Img8 is assigned 3-4 
clusters. 
For computational efficiency, all images were converted to grayscale prior to 
clustering. 

 
Img1 

Fig.2. Synthetic image 
 

    
Img2 Img3 Img4 Img5 

Fig.3. Remote sensing images  

 

   

Img6 Img7 Img8 

Fig.4. Medical images 

Table 1 bellow presents the result obtained for image Img6. For this image KLDCVI 

find the right number of cluster with DBI, PCI, MPC, XBI and MBMF. Table 2 

provides results obtained on all images 



Table 1. Clustering result metrics for Img6 
Bold numbers presents optimum values 

C        DBI-    PCI+     PEI-      MPC+     XBI-     FSI-     MBMF+   IMI-     KLDCVI- 

2      1.0000   0.0000   1.0000   0.0000   0.8652   0.0000   0.0000  0.0000   1.0000 

3      0.0000   1.0000   0.0000   0.9683   0.0910   0.9933   1.0000  0.9947   0.0981 

4      0.2774   0.8877   0.2485   1.0000   0.0000   1.0000   0.8593  1.0000   0.0006 

5      0.2871   0.7546   0.5271   0.9866   0.2469   0.9415   0.7362  0.9702   0.0000 

6      0.4198   0.5139   0.9635   0.9135   1.0000   0.8212   0.5229  0.9036   0.0273 

Table 2. cluster numbers decided by CVIs  

Image #C DBI PCI PEI MPC XBI FSI MBMF IMI KLDCVI 

Img1 6 - 6 6 6 6 6 6 6 6 

Img2 3-4 3 2 2 3 3 3 2 2 3 

Img3 4-5 3 3 2 3 3 2 3 4 3 

Img4 3-4 2 2 2 2 2 3 2 4 2 

Img5 4-5 3 2 2 3 3 6 2 2 4 

Img6 3-5 3 3 3 4 4 2 3 2 5 

Img7 3-5 3 3 3 3 3 2 3 2 3 

Img8 3-4 3 3 2 3 3 6 3 2 3 

We Remarque that our KLDCVI index detects the right number of clusters for 6 

images over 8. This confirms the robustness of our CVI.  

6 Conclusion 

FCM is widely used in lots of fields. But it needs to preset the number of clusters and 
is greatly influenced by the initial cluster centroids. This paper presents a method for 
determining the number of clusters by using of FCM algorithm. In this method, a 
Kullback-Leibler Divergence is used for developing a new cluster validity index 
termed KLDCVI. This CVI can estimates the right number of clusters for a given 
image. This new fuzzy clustering validity index was put forward based on fuzzy 
compactness and separation based on Kullback-Leibler Divergence so that the 
clustering result is closer to global optimum. The index is robust and interpretable 
when the number of clusters tends to that of objects in the dataset. The contributions 
are validated by experimental results. 

References 

1. Positional and confidence voting based consensus functions for fuzzy cluster ensembles. 

Sevillano, X. et Socor, J. 2012, Fuzzy Sets Syst, Vol. 193, pp. 1-32. 

2. Fuzzy c-means algorithms for very large data. Havens, T. C. Bezdek, J. C. Leckie, C. Hall, 

L. O. et Palaniswami, M. [éd.] chakir. 6, Dec 2012., IEEE Trans. Fuzzy Syst, Vol. 20, pp. 

1130-1146. 

3. Entropy-based consensus clustering for patient stratification. Liu, H. Zhao, R. Feng, H. 

Cheng, F. Fu, Y. et Liu, Y. Mar 2017, Bioinformatics. 



4. A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data. 

Ahmed, M. Yamany, S. Mohamed, N. Farak, A. et Moriarty, T. 3, 2002, IEEE Transaction on 

Medical. Imaging, Vol. 21, pp. 193-199. 

5. Spatially coherent fuzzy clustering for accurate and noise-robust image segmentation. 

Despotovic, I. Vansteenkiste, E. et Philips, W. 4, 2013., IEEE Signal Processing Letters, Vol. 

20, pp. 295-298. 

6. A modified interval type-2 fuzzy C-means algorithm with application in MR image 

segmentation. Qiu, C. Xiao, J. Yu, L. Han, L. et Iqbal, M. N. 2013., Pattern Recognition 

Letters, Vol. 34, pp. 1329-1338. 

7. Image guided fuzzy C-means for image segmentation. Guo, L., Chen, L., Wu, Y. et Chen, 

C.L.P. 6, 2017, Int. J. Fuzzy Syst., Vol. 19, pp. 1960-1969. 

8. Enhanced Spatial Fuzzy C-Means Algorithm for Brain Tissue Segmentation in T1 Images. B. 

Jafrasteh, M. Lubián-Gutiérrez, S. P. Lubián-López et al. 2024, Neuroinformatics, pp. 1–14 . 

9. A Fuzzy Relative of the ISODATA Process and its Use in Detecting Compact Well-Separated 

Clusters. Dunn, J. C. 3, 1973, J. Cybernet, Vol. 3, pp. 32-57. 

10. Pattern Recognition with Fuzzy Objective Function Algorithms. Bezdek, J. C. New York : 

s.n., 1981, Plenum Press. 

11. Fast and robust Fuzzy C-means clustering algorithms incorporating local information for 

image segmentation. Cai, W., Chen, S. et Zhang, D. 2007, Pattern Recognition, Vol. 40, pp. 

825-838. 

12. Image segmentation by Fuzzy C-means clustering algorithm with a novel penalty term. 

Yang, Y., Huang, S. 2007, Comput. Inform., Vol. 26, pp. 17-31. 

13. Improved Fuzzy C-means clustering algorithm based on cluster density. Lou, X., Li, J., Liu, 

H. 2012, J. Comput. Inf. Syst., Vol. 8, pp. 727-737. 

14. Robust image segmentation using FCM with spatial constraints based on new kernel-

induced distance measure. Chen, S., Zhang, D. 4, 2004, IEEE Trans. Syst., Vol. 34, pp. 1907–
1916. 

15. Novel modified fuzzy c-means algorithm with applications. Kang, J., Min, L., Luan, Q., Li, 

X. et Liu, J. 2, 2009, Digital signal processing, Vol. 19, pp. 309-319. 

16. A kernelized fuzzy c-means algorithm for automatic magnetic resonance image 

segmentation. Zanaty, E. A., Aljahdali, S., Debnath N. 1, 2009, Journal of Computational 

Methods in Sciences and Engineering , Vol. 9, pp. 123-136. 

17. Robust image segmentation using FCM with spatial constraints based on new kernel-

induced distance measure. Chen, S. C. and Zhang, D. Q. 4, Aug. 2004, IEEE Trans. Syst., Man, 

Cybern. B, Cybern., Vol. 34, pp. 1907-1916. 



18. A multiple-Kernel Fuzzy C-means algorithm for image segmentation. Chen, L., Chen, C. L. 

P. et Lu, M. 5, 2011, IEEE Transactionson Systems, Man, and Cybernetics, Part B, , Vol. 41, 

pp. 1263–1274 . 

19. Medical Image Segmentation and Detection of MR Images Based on Spatial Multiple-

Kernel Fuzzy C-Means Algorithm. Mehena, J. and Adhikary, M. C. 6, 2015, International 

Journal of Biomedical and Biological Engineering, Vol. 9. 

20. Adaptive Kernel-Based Fuzzy C-Means Clustering with Spatial Constraints for Image 

Segmentation. Guang, H., and Zhenbin, D. 1, 2019, International Journal of Pattern 

Recognition and Artificial Intelligence, Vol. 33. 

21. Improved spatial fuzzy c-means clustering for image segmentation using PSO initialization, 

Mahalanobis distance and post-segmentation correction. Benaichouche, A. N., Oulhadj, H. et 

Siarry, P. 2013, Digital Signal processing, Vol. 23, pp. 1390-1400. 

22. MRI brain image segmentation using combined fuzzy logic and neural networks for the 

tumor detection. Malakooti, M.V., Mousavi, S.A. et Taba, N.H. 5, 2013, J. Acad. Appl. Stud., 

Vol. 3. 

23. Fuzzy clustering and deformable model for tumor segmentation on MRI brain image: a 

combined approach. Rajendrana, A., Dhanasekaran, R. Coimbatore, India : s.n., 2012. Proc. 

Int. Conf. Communication Technology and System Design, Procedia Engineering. pp. 327–
333. 

24. Fast automatic medical image segmentation based on spatial kernel fuzzy C-means on level 

set method. Alipour, S. and Shanbehzadeh, J. 6, August 2014, Machine Vision and 

Applications, Vol. 25, pp. 1469-1488. 

25. An Adaptive Multiobjective Genetic Algorithm with Fuzzy c -Means for Automatic Data 

Clustering. Dong, Z., Jia, H., Liu, M. 2018, Mathematical Problems in Engineering, Vol. 2018, 

pp. 1-13. 

26. Fuzzy farthest point first method for MRI brain image clustering . Debakla, M., Salem, M., 

Djemal, K. et Benmeriem, K. 13, 2019, IET Image Processing , Vol. 13, pp. 2395-2400. 

27. Integrating fuzzy metrics and negation operator in FCM algorithm via genetic algorithm 

for MRI image segmentation. F. Kutlu, İ. Ayaz, and H. Garg. 2024, Neural Comput. Appl., pp. 
1–21. 

28. A novel brain MRI image segmentation method using an improved multi-view fuzzy c-

means clustering algorithm. L. Hua, Y. Gu, X. Gu et al. 2021, Front. Neurosci, Vol. 15, p. 

662674. 

29. On information and sufficiency. Kullback, S. et Leibler, R. 1951, Annals of Mathematical 

Statistics, Vol. 22, pp. 79-86. 

30. Ensemble Fuzzy C-means Clustering Algorithms based on KL-Divergence for Medical 

Image Segmentation. Zou, J., Chen, L. et Chen, C. L. P. 2013. IEEE International Conference 

on Bioinformatics and Biomedicine. Vol. 1, pp. 291-296. 



31. A Hard C-Means Clustering Algorithm Incorporating Membership KL Divergence and 

Local Data Information for Noisy Image Segmentation. Gharieb, R. R., Gendy, G. et Selim, H. 

4, 2018, International Journal of Pattern Recognition and Arti¯cial Intelligence, Vol. 32, pp. 1-

22. 

32. KL Divergence-Based Fuzzy Cluster Ensemble for Image Segmentation. Wei, H., Chen, L. 

et Guo, L. 4, 12 April 2018, Entropy, Vol. 20. 

33. An examination of procedures for determining the number of clusters in a data set. 

Milligan, G. W. and Cooper, M. C. 2, 1985, Psychometrika, Vol. 50, pp. 159-179. 

34. Validity studies in clustering methodologies. Dubes, R. and Jain, A. 1980, Pattern 

Recognition, Vol. 11, pp. 235-254. 

35. A new robust fuzzy clustering validity index for imbalanced data sets. Y. Liu, Y. Jiang, T. 

Hou, and F. Liu. 2021, Information Sciences, Vol. 547, pp. 579-591, . 

36. Determining the number of clusters using information entropy for mixed data. Liang, J., 

Zhao, X., Li, D. et al., et. 2012, PatternRecognit, Vol. 45, pp. 2251–2265. 

37. Generalized information theoretic cluster validity indices for soft clusterings 2014, pp. 24-

31. Lie, Y., Bezdek, V., Chan, J., Nguyen, N. X., Romano, S. et Bailey, J. 2014, Proc. IEEE 

SSCI, pp. 24-31. 

38. The Generalized C Index for Internal Fuzzy Cluster Validity. Bezdek, J., Moshtaghi, M., 

Runkler, T. & Leckie, C. 6, 2016, IEEE Transactions on Fuzzy Systems, Vol. 24. 

39. FCM: The fuzzy c-means clustering algorithm. Bezdeck, J. C., Ehrlich, R., Full, W. 2, 1984, 

Computers & Geosciences, Vol. 10, pp. 191-203. 

40. Validatingfuzzypartitionobtainedthroughc-shellsclustering. Dave, R. N. 1996, Pattern 

Recognit. Lett., Vol. 17, pp. 613-623. 

41. A validity measure for fuzzy clustering. Xie, X. L., Beni, G. 8, 1991, IEEE Trans. Pattern 

Anal. Mach. Intell., Vol. 13, pp. 841–847. 

42. A new method of choosing the number of clusters for the fuzzy c-means method. Fukuyama 

Y., Sugeno M. 1989, Proc. 5th Fuzzy Syst. Symp., pp. 247-250. 

43. T. V. Erven, P. Harremos. Rényi Divergence and Kullback-Leibler Divergence. s.l. : IEEE 

Transactions on Information Theory, July 2014. Vol. 60, pp. 3797 - 3820. 

44. Clustering Incomplete Data Using Kernel- Based Fuzzy C-means Algorithm. Zhang, D. Q., 

Chen, S. C. 3, Dec. 2003, Neural Processing Letters, Vol. 18, pp. 155–162. 

45. A cluster validity index for fuzzy clustering. Wu K.L., Yang M.S. 2005, Pattern Recog. 

Lett., Vol. 26, pp. 1275–1291. 

 

 

 


	1 Introduction
	2 FCM algorithm
	3 Cluster validity index for fuzzy clustering algorithms
	Where Si is the mean distance between the center of the cluster I and all the points belonging to this cluster and Di,j denotes the distance between the centroids of the clusters I and J. DBI is  min optimum index.

	4 The Proposed CVI
	1
	2
	3
	4
	4.1 Kullback-Leibler Divergence
	4.2 Structure of KLDCVI
	4.2.1 Separation measure
	4.2.2 Compactness measure

	5 Experiments
	6 Conclusion
	References
	1. Positional and confidence voting based consensus functions for fuzzy cluster ensembles. Sevillano, X. et Socor, J. 2012, Fuzzy Sets Syst, Vol. 193, pp. 1-32.

