
Enhancing Grey Wolf Optimizer for Imbalanced Feature 

Selection in Diabetes Prediction via Chaotic Initialization 

Abstract. Feature selection is a crucial pre-processing step in machine learning, 

particularly for high-dimensional datasets and imbalanced classification prob-

lems. It aims to identify a minimal subset of relevant features that significantly 

improve model performance and interpretability. This article proposes an en-

hanced Grey Wolf Optimizer (GWO) for feature selection, integrating chaotic 

maps for population initialization. The proposed approach, termed GWO-CI 

(GWO with Chaotic feature Initialization), is applied to an imbalanced diabetes 

prediction dataset, utilizing a Random Forest classifier as the evaluation model. 

Experimental results demonstrate that chaotic initialization, specifically using 

Logistic, Tent, and Sine maps, can lead to more diverse initial populations, po-

tentially improving the exploration capabilities of GWO and yielding superior 

feature subsets compared to standard random initialization, as evidenced by en-

hanced classification metrics (F1-score) on the imbalanced dataset. 

Keywords: Feature Selection, Grey Wolf Optimizer, Chaotic Initialization, Im-

balanced Dataset, Random Forest, Diabetes Prediction. 

1 Introduction 

In the time of big data, datasets often contain a large number of features. Many of 

these features may be redundant, irrelevant, or noisy. Such features can degrade the 

performance of machine learning models, increase computational complexity, and 

make models harder to interpret. Feature selection addresses these challenges by iden-

tifying a subset of the most informative features, leading to more accurate, efficient, 

and robust predictive models. 

Meta-heuristic algorithms, inspired by natural evolution, have emerged as powerful 

tools to solve complex optimization problems, including feature selection. The Grey 

Wolf Optimizer (GWO) is a recent swarm intelligence algorithm that mimics the 

hunting behavior and social hierarchy of grey wolves [1]. Its simplicity and effective-

ness have led to its successful application in various domains. However, like many 

meta-heuristic algorithms, the performance of GWO is highly dependent on the quali-

ty and diversity of their initial population.  

The initialization of the Grey Wolf Optimizer (GWO) plays a crucial role in its 

performance for feature selection. Many studies have focused on improving GWO's 

initial population to enhance its global search capability and avoid premature conver-

gence [2]. For instance, a novel two-phase crossover operator has been integrated 

with GWO, where the initialization phase randomly generates the population, with 

subsequent crossover phases designed to improve exploitation and enhance classifica-

tion accuracy by selecting informative features [9]. Another adaptive mechanism-

based GWO (AMGWO) introduced a new nonlinear parameter control strategy and 
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an adaptive fitness distance balance mechanism to accelerate convergence and pre-

vent premature convergence, which inherently relies on an effective initial population 

[10]. An improved GWO with Ant Colony Optimization (ACO) for population initial-

ization has been proposed to overcome suboptimal initial solutions in P2P lending 

default prediction, showing improved accuracy and stability compared to the standard 

GWO [7]. Similarly, hybrid approaches combining GWO with other meta-heuristic 

algorithms, such as Genetic Algorithm (GA), often incorporate chaotic maps and 

Opposition-Based Learning (OBL) for more uniformly distributed population initiali-

zation, aiming to enhance diversity and mitigate premature convergence in high-

dimensional hyperspectral image classification [8]. The idea is that a well-initialized 

population allows the GWO to explore the search space more effectively from the 

outset, leading to better feature subsets. 

A poorly initialized population can lead to premature convergence to suboptimal 

solutions or slow convergence rates. To alleviate this problem, chaotic maps have 

been proposed as a non-random, yet sensitive to initial conditions, alternative for 

initializing populations. Chaotic systems, despite being deterministic, exhibit highly 

complex and unpredictable behaviors that can effectively explore the search space. 

This article proposes the integration of chaotic initialization into the Grey Wolf 

Optimizer for feature selection, specifically adapted for imbalanced datasets. The 

proposed GWO-CFI approach aims to: 

1. Leverage the global exploration capabilities of chaotic maps for initial popu-

lation diversity. 

2. Employ the GWO's balance between exploration and exploitation for effec-

tive feature subset search. 

3. Utilize a Random Forest classifier as a robust evaluation model within a 

wrapper-based feature selection framework. 

The effectiveness of GWO-CFI is demonstrated on the "Diabetes Prediction Da-

taset" from Kaggle, comparing the performance of Logistic, Tent, and Sine map ini-

tializations against standard random initialization using weighted F1-score as the 

primary classification metric. The dataset used in this study exhibits significant class 

imbalance, which is a common characteristic of real-world medical data. This study 

evaluates the method's performance directly on this imbalanced distribution without 

applying any explicit data rebalancing techniques. 

The rest of the paper is organized as follows: Section 2 provides a detailed over-

view of the Standard Grey Wolf Optimizer (GWO). Section 3 introduces the concept 

of Chaotic Maps and details the Logistic, Tent, and Sine maps used for initialization. 

Section 4 formulates Feature Selection as a Binary Optimization Problem. Section 5 

describes the Random Forest Classifier used for evaluation. Section 6 presents the 

Proposed Methodology (GWO-CFI), including data preprocessing, the fitness func-

tion, and evaluation metrics. Section 7 outlines the Experimental Setup, detailing the 

dataset, preprocessing steps, and algorithm parameters. Section 8 discusses the Re-

sults and Discussion of the experiments. Finally, Section 9 concludes the paper and 

suggests directions for Future Work. 
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2 Standard Grey Wolf Optimizer (GWO)  

The Grey Wolf Optimizer (GWO) is a recent swarm intelligence meta-heuristic algo-

rithm proposed by Mirjalili et al. in 2014 [2]. It mimics the leadership hierarchy and 

hunting mechanism of grey wolves in nature [3]. A grey wolf pack typically consists 

of four main types of wolves: 

- Alpha: The dominant leader, responsible for decision-making regarding hunting. 

- Beta: The second in command, assisting the alpha in decision-making and acting 

as a disciplinarian. 

- Delta: Subordinate to alpha and beta, but dominant over omega. Deltas are re-

sponsible for scouting, guarding, etc. 

- Omega: The lowest-ranking wolves, following the directives of the higher-

ranking wolves. 

In the GWO algorithm, the best solution found so far is considered the alpha. The 

second and third best solutions are designated as beta and delta, respectively. The 

remaining candidate solutions are assumed to be omega. The omega wolves then ad-

just their positions and improve iteratively based on the guidance of these leading 

wolves. The hunting process in GWO (optimization process) involves three main 

steps: encircling prey, hunting, and attacking prey [1]. 

During iterations, each wolf i is represented by a position vector Xi(t) =
{Xi1, Xi2 , … , Xid} in a d −dimensional space. This vector consists of binary values, 

where d signifies the number of variables in the problem being solved [3].  

The wolf population is organized as a matrix with dimensions 𝑁 × d, where N is 

the number of wolves. Each wolf's position within this matrix is then assessed using a 

fitness function f(Xi(t)). 

Grey wolves encircle their prey during the hunt. This behavior is modeled mathe-

matically as follows [1]:  

 𝐷 = |C. Xp − X| (1) 

Where X, Xp and D designate respectively the current wolf, the positions of the 

prey and the distance between them. The top three wolves (alpha, beta, and delta) 

update their positions using: 

 X(t) = Xp(t) − A. D (2) 

Where, vectors A and C provide direction for the wolves' movements [3]. They en-

sure that the wolves don't all move in the same direction, promoting exploration and 

diversification of the search space. They are determined by the following equations: 

 𝐴 = 2𝑎. 𝑟1 − 𝑎 (3) 

 𝐶 = 2. 𝑟2 (4) 

 𝑎 = 2 (1 −
𝑡

𝑇
) (5) 
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Here, r1 and r2  are two random vectors. The vector a decreases linearly from 2 to 

0 as the iterations progress. In this context, 𝑡 represents the current iteration and 𝑇 is 

the total number of iterations. 

The position of each omega wolf (X) is updated based on the leaders' positions (al-

pha, beta, and delta) using the following equation: 

 X(t + 1) =
X1+X2+X3

3
 (6) 

Where 

          X1 = Xα − A1. (Dα)       X2 = Xβ − A2. (Dβ)          X3 = Xδ − A3. (Dδ) (7) 

And 

 Dα = |C1. Xα − X| Dβ = |C2. Xβ − X| Dδ = |C3. Xδ − X| (8) 

Omega wolves are limited in their ability to explore the search space independently 

because they always follow the leaders. This restricted exploration increases the risk 

of the algorithm getting stuck in local optima [4]. 

3 Chaotic Maps  

Chaotic systems are deterministic, nonlinear systems that exhibit complex, pseudo-

random behavior despite following simple rules. Their key properties, such as sensi-

tivity to initial conditions, ergodicity (exploring the entire state space), and non-

periodicity, make them suitable for generating diverse initial populations for meta-

heuristic algorithms. Using chaotic maps can potentially improve the algorithm's 

global search capability and prevent premature convergence. The values generated by 

chaotic maps are typically in the range [0,1], which are then scaled to the specific 

problem's bounds [6]. 

 

3.1 Logistic Map 

The Logistic map is one of the simplest and most well-known chaotic systems. Its 

equation is: 

 𝑥𝑘+1 = 𝜇𝑥𝑘(1 − 𝑥𝑘) (9) 

For chaotic behavior, the parameter μ is typically set to 4, and the initial value x0 in 

(0,1) 

3.2 Tent Map 

The Tent map is another simple piecewise linear chaotic map defined by:  

 𝑥𝑘+1 = {
2𝑥𝑘             0 ≤ 𝑥𝑘 < 0.5
2(1 − 𝑥𝑘)  0.5 ≤ 𝑥𝑘 ≤ 1

   (10) 
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The Tent map also generates values in the range [0,1]. It exhibits uniform distribu-

tion properties over its range, which is beneficial for population initialization [6]. 

3.3 Sine Map 

The Sine map is a continuous chaotic map given by: 

 𝑥𝑘+1 = 𝑠𝑖𝑛 (𝜋𝑥𝑘) (11) 

Similar to the Logistic and Tent maps, the Sine map produces values in [0,1] when 

xk in [0,1]. It also offers good ergodicity for generating diverse initial values. 

4 Feature selection as a binary optimization problem 

The problem of feature selection is typically formulated as a binary optimization 

problem [12]. The main step in this process is to determine the subset of features to 

incorporate in the representation of the solution (see Fig.1).  Each candidate solution 

(wolf position) is a vector of length d equal to the number of features. The value 1 

indicates that the corresponding feature is selected, while the value 0 signifies the non 

selection of the feature. 
1 1 0 1 1 0 0 0 1 1 

d 

 

1 1 1 1 1 1   0 0 0 0 

Features selected   Features not selected 

Fig.1. Representation of a solution in features selection 

Since GWO operates in a continuous search space, a binarization strategy is re-

quired. A common approach is to use a threshold function [12]:  

                                            𝑏𝑖𝑛_𝑓𝑒𝑎𝑡𝑗 = {
1 𝑖𝑓 𝑥𝑗 ≥ 0.5

0 𝑖𝑓 𝑥𝑗 < 0.5
         (12) 

Where, xj is the continuous value of the jth dimension of a wolf's position, and 

bin_featj is the corresponding binary selection. This ensures that the continuous 

search space of GWO is effectively translated into a discrete feature selection prob-

lem. 

5 Random Forest Classifier 

Random Forest is a machine learning algorithm that leverages multiple decision trees 

to enhance predictive accuracy [5]. Each individual tree is trained on different, ran-

domly selected subsets of the data. For classification tasks, the final prediction is de-

termined by a majority vote among the trees' outputs, while for regression tasks, it's 

an average of their predictions. This ensemble approach effectively boosts accuracy 

and minimizes errors. Random Forest offers several key advantages that contribute to 
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its widespread use and effectiveness. RF is known by its strong robustness to overfit-

ting by aggregating predictions from numerous decision trees reducing variance and 

leading to more generalized and reliable models [4]. Also RF is highly capable to 

handle high-dimensional datasets. It performs well even when dealing with a large 

number of features, making it suitable for complex real-world problems. Furthermore, 

the algorithm demonstrates insensitivity to feature scaling, which means there's no 

need to preprocess features by scaling them to a particular range.  

6 Proposed Methodology: GWO-CFI for Feature Selection 

The performance of any meta-heuristic algorithm, including GWO, is significantly 

influenced by its initial population. Traditional random initialization can sometimes 

suffer from: 

- Non-uniform distribution: Random numbers might cluster in certain regions, 

leaving other parts of the search space unexplored. 

- Lack of ergodicity: Purely random sequences might not cover the entire 

search space effectively over a limited number of initializations. 

A good initial population should ideally possess two key characteristics: 

1. Diversity (Exploration): The initial solutions should be spread out across the 

entire search space. This increases the chances of starting near the global op-

timum and helps prevent the algorithm from premature trapping in local op-

tima. 

2. Proximity to Optimum: Despite not always guaranteed, a diverse initializa-

tion might also include solutions that are already relatively good, potentially 

speeding up convergence. 

The proposed methodology integrates chaotic initialization into the Grey Wolf Op-

timizer for feature selection. The overall flowchart is depicted in Fig.2. 



7 

 

Fig.2. Flowchart of the proposed GWO-CFI feature selection approach 

6.1 Data Preprocessing 

After cleaning data from null values and duplicates, the following steps are ensured:  

1. Encoding: The "Diabetes Prediction Dataset" contains both numerical and 

categorical features (numerical like BMI and categorical like 'gender' and 

Get 𝐗𝛂, 𝐗𝛃 𝐚𝐧𝐝 𝐗𝛅 

𝐢𝐭𝐞𝐫 = 𝐢𝐭𝐞𝐫 + 𝟏 𝒊 ≤ 𝑵 

𝒊𝒕𝒆𝒓 ≤ 𝑴𝒂𝒙_𝒊𝒕𝒆𝒓 

Calculate fitness 

Load Imbalanced Dataset 

Preprocessing  

Splitting Dataset into train/test 

Initializing population with Chaotic Maps 

Start 

No  

Yes   

No  
𝐢 = 𝐢 + 𝟏 

Yes   

Calculate the coefficients: 

𝐗𝟏 = 𝐗𝛂 − 𝐀𝟏. (𝐃𝛂) 

𝐗𝟐 = 𝐗𝛃 − 𝐀𝟐. (𝐃𝛃) 

𝐗𝟑 = 𝐗𝛅 − 𝐀𝟑. (𝐃𝛅) 
 

Calculate the best solution: 

𝐗(𝐭 + 𝟏) =
𝐗𝟏 + 𝐗𝟐 + 𝐗𝟑

𝟑
 

End 
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'smoking_history'). Categorical features like 'gender' are converted into nu-

merical format creating new binary features. 

2. Feature Scaling: Numerical features are scaled to a common range which 

is [0,1]. This helps prevent features with larger numerical ranges from domi-

nating the distance calculations in optimization algorithms, although Ran-

dom Forest itself is less sensitive to scaling. 

3. Stratified Data Splitting: The dataset is split into training and testing sets. 

This ensures that the class distribution in both training and test sets is main-

tained, which is crucial for imbalanced datasets. 

6.2 Fitness Function for Imbalanced Feature Selection 

The fitness function guides the GWO in its search for the optimal feature subset. A 

multi-objective fitness function is commonly used, balancing predictive performance 

and the number of selected features. We aim to minimize this fitness function. 

The fitness function f(S)  for a binary feature subset S is defined as: 

                𝑓(𝑆) = 𝛼 × (1 − 𝐹1_𝑠𝑐𝑜𝑟𝑒Weighted ) + (1 − 𝛼) ×
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠
      (12) 

 

The weighted F1-score obtained by the Random Forest classifier trained on the se-

lected features and evaluated on the test set. Weighted F1-score is chosen because it 

inherently accounts for class imbalance by weighting metrics by the number of true 

instances for each label, providing a more reliable performance indicator than raw 

accuracy for such scenarios. Maximizing this value corresponds to minimizing (1 - 

F1-score). α  is a weighting parameter, typically set close to 1 (e.g., 0.99), to empha-

size the importance of classification performance over feature reduction. A higher 

alpha prioritizes a better F1-score, while a lower alpha puts more emphasis on reduc-

ing the number of features. 

6.3 Evaluation Metrics 

For the final evaluation of the selected feature subsets, especially on datasets with 

natural class imbalance, multiple metrics are reported: 

1. F1-score (weighted): Harmonic mean of precision and recall, weighted by 

class support. More robust than accuracy for imbalance. 

2. Precision (weighted): The proportion of positive identifications that were ac-

tually correct. 

3. Recall (weighted): The proportion of actual positives that were correctly 

identified. 

4. Number of Selected Features: Indicates the parsimony of the solution. 
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7 Experiments 

The present work utilizes the "Diabetes Prediction Dataset" from Kaggle 

(https://www.kaggle.com/datasets/dat00700/diabetes-prediction-dataset). 

7.1 Dataset 

This dataset contains 100,000 samples and 8 features, plus 'diabetes' as binary target 

variable (0 or 1). The dataset contains the following features: 

- gender (categorical: Female, Male, Other) 

- age (numerical) 

- hypertension (binary: 0, 1) 

- heart_disease (binary: 0, 1) 

- smoking_history (categorical: No Info, never, ever, current, former, not cur-

rent) 

- bmi (numerical) 

- HbA1c_level (numerical) 

- blood_glucose_level (numerical) 

- Target: diabetes (binary: 0 for no diabetes, 1 for diabetes). 

The dataset exhibits significant class imbalance (Figure 3). Analysis shows a high 

majority of individuals don’t have diabetes (class 0) compared to those having diabe-

tes (class 1) (approximately 91% Class 0 and 9% Class 1). This imbalance is a charac-

teristic of the dataset that is directly reflected in the training and testing sets, without 

any explicit balancing techniques applied. 

 

Fig.3. Diabetes vs Non-Diabetes counts 
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7.2 Preprocessing Steps 

1. Cleaning: We performed data cleaning to remove null values and duplicate 

entries from the dataset. After this process, the dataset was refined to 96,164 

records. 

2. Encoding: 'gender' and 'smoking_history' columns are one-hot encoded to 

avoid multicollinearity. This expands the original 8 features into a larger set 

of 15 features. 

3. Scaling: All numerical features (including newly created one-hot encoded 

features) are scaled to the [0,1] range. 

4. Train-Test Split: The dataset is split into 70% training and 30% testing sets. 

7.3 Algorithm Parameters 

After loading and preprocessing the dataset, four different scenarios for GWO initiali-

zation are evaluated: 

- GWO with Standard Random Initialization (GWO-SRI) (for baseline com-

parison) 

- GWO with Logistic Map Initialization (GWO-LMI) 

- GWO with Tent Map Initialization (GWO-TMI) 

- GWO with Sine Map Initialization (GWO-SMI) 

Due to its robustness and good generalization capabilities, Random Forest is a suit-

able choice as the evaluation model in our feature selection approaches. 

The Grey Wolf Optimizer’s parameters used are:  

- Population Size: 30 wolves 

- Maximum Iterations: 50 

The Chaotic Maps’ parameters considered are:  

- Logistic Map, Tent Map, Sine Map are used for initialization, each with 

their standard parameters and initial seeds chosen randomly in (0,1) 

avoiding problematic points for Logistic map. 

For the Random Forest Classifier, the number of trees is 100 and the class_weight 

is None (Default behavior, no explicit weight adjustment for imbalance). For the fit-

ness Function, the chosen α is set to 0.99 (high weight on F1-score performance) 

8 Results and Discussion 

The experiments were conducted to evaluate the impact of different chaotic initializa-

tion strategies on the performance of GWO for feature selection on the diabetes pre-

diction dataset, which naturally exhibits class imbalance. No explicit data balancing 

techniques were applied; the Random Forest classifier was trained directly on the 

imbalanced training data. 

The following figure gives the final fitness achieved by GWO-LMI, GWO-TMI, 

GWO-SMI, and original GWO with random initialization after 50 iterations (see 

Fig.4). 
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Fig.4. Fitness evolution for the four scenarios 

Due to the stochastic nature of meta-heuristics, slight variations might occur across 

runs; however, general trends in performance are usually consistent. The displayed 

iteration output shows the progress of the best fitness and selected features throughout 

the optimization process. 

This iterative output demonstrates how the GWO algorithm progressively refines 

the feature subset and improves the fitness. Over iterations, the number of selected 

features might fluctuate, but the algorithm generally aims for a smaller, more effec-

tive set. 

Table 1 summarizes the performance of the four GWO versions, differentiated by 

their initialization methods, across the chosen metrics: Weighted F1-score, Precision, 

and Recall. 

Table 1.Performance comparison with basic GWO  

Initialization Method Best Fitness Selected Features F1-Score Precision Recall 

Logistic Map 
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Tent Map 
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Sine Map 
0.0748 6 
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0.9
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Standard Random  
0.0780 7 

0.922
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0.922

5 

0.9

220 

From the results, all the three chaotic initialization methods used in experimenta-

tions (Logistic, Tent, Sine Maps) consistently outperformed the standard random 

initialization in terms of the achieved best fitness (lower fitness) and generally result-

ed in better classification performance metrics (higher F1-score, Precision, and Re-

call). This suggests that the initial diversity and ergodic exploration provided by cha-

otic maps effectively guide the GWO algorithm towards better regions of the search 

space from the outset.  

5 10 15 20 25 30 35 40 45 50
0.074

0.076

0.078

0.08

0.082

0.084

0.086

Iterations

F
it
n

e
s
s

 

 

GWO-LMI

GWO-SMI

GWO-TMI

GWO-SRI



12 

In this specific experiment, the Logistic Map-initialized GWO yielded the best 

overall performance, achieving the lowest fitness and highest F1-score, along with a 

more compact feature subset of 5 features (age, hypertension, bmi, HbA1c_level and 

blood_glucose_level). This might be attributed to the specific chaotic properties of the 

Logistic map being well-suited for the problem landscape of this dataset. The reduced 

number of features also lowers computational costs during model training and infer-

ence. 

The overall F1-score and related metrics (Precision, Recall) are still robust, despite 

no explicit data balancing techniques being applied. The use of weighted F1-score in 

the fitness function and for final reporting is crucial here, as it inherently accounts for 

the class imbalance by weighting metrics by the number of true instances for each 

label. This provides a more accurate picture of performance across both classes than 

raw accuracy alone, confirming that even without direct re-sampling, the selected 

features can lead to models that perform reasonably well on both majority and minori-

ty classes. 

8.1 Best features selected using GWO based chaotic initialization 

In the end, the repeatedly selected features across the best subsets from chaotic initial-

izations often include: 

- age 

- hypertension 

- bmi 

- HbA1c_level 

- blood_glucose_level These features are clinically well-known strong indi-

cators for diabetes, which adds confidence to the feature selection process. 

'heart_disease' and specific smoking_history categories also appear, 

demonstrating their relevance. 

9 Conclusion 

This article proposed and implemented an enhanced Grey Wolf Optimizer for feature 

selection, integrating chaotic maps (Logistic, Tent and Sine) for robust population 

initialization. This approach is applied to the diabetes prediction problem without 

explicit data resampling. The GWO-CFI approach demonstrated superior performance 

over standard random initialization. Chaotic initialization led to better fitness values, 

improved classification metrics (F1-score), and often resulted in more concise and 

clinically relevant feature subsets. This highlights the effectiveness of using chaotic 

dynamics to improve the initial exploration capabilities of meta-heuristic algorithms, 

even when working directly with imbalanced data. The selected features provide val-

uable insights for diabetes prediction, paving the way for more accurate and interpret-

able diagnostic models. 

The algorithms require further validation across a more diverse range of datasets, 

specifically those exhibiting higher dimensionality, to ascertain their generalizability 

beyond the context of the 'Diabetes Prediction Dataset.' Future work will also investi-
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gate the integration of explicit imbalance handling methodologies to bolster perfor-

mance on skewed data distributions. 
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