Enhancing Grey Wolf Optimizer for Imbalanced Feature
Selection in Diabetes Prediction via Chaotic Initialization

Abstract. Feature selection is a crucial pre-processing step in machine learning,
particularly for high-dimensional datasets and imbalanced classification prob-
lems. It aims to identify a minimal subset of relevant features that significantly
improve model performance and interpretability. This article proposes an en-
hanced Grey Wolf Optimizer (GWO) for feature selection, integrating chaotic
maps for population initialization. The proposed approach, termed GWO-CI
(GWO with Chaotic feature Initialization), is applied to an imbalanced diabetes
prediction dataset, utilizing a Random Forest classifier as the evaluation model.
Experimental results demonstrate that chaotic initialization, specifically using
Logistic, Tent, and Sine maps, can lead to more diverse initial populations, po-
tentially improving the exploration capabilities of GWO and yielding superior
feature subsets compared to standard random initialization, as evidenced by en-
hanced classification metrics (F1-score) on the imbalanced dataset.

Keywords: Feature Selection, Grey Wolf Optimizer, Chaotic Initialization, Im-
balanced Dataset, Random Forest, Diabetes Prediction.

1 Introduction

In the time of big data, datasets often contain a large number of features. Many of
these features may be redundant, irrelevant, or noisy. Such features can degrade the
performance of machine learning models, increase computational complexity, and
make models harder to interpret. Feature selection addresses these challenges by iden-
tifying a subset of the most informative features, leading to more accurate, efficient,
and robust predictive models.

Meta-heuristic algorithms, inspired by natural evolution, have emerged as powerful
tools to solve complex optimization problems, including feature selection. The Grey
Wolf Optimizer (GWO) is a recent swarm intelligence algorithm that mimics the
hunting behavior and social hierarchy of grey wolves [1]. Its simplicity and effective-
ness have led to its successful application in various domains. However, like many
meta-heuristic algorithms, the performance of GWO is highly dependent on the quali-
ty and diversity of their initial population.

The initialization of the Grey Wolf Optimizer (GWO) plays a crucial role in its
performance for feature selection. Many studies have focused on improving GWQO's
initial population to enhance its global search capability and avoid premature conver-
gence [2]. For instance, a novel two-phase crossover operator has been integrated
with GWO, where the initialization phase randomly generates the population, with
subsequent crossover phases designed to improve exploitation and enhance classifica-
tion accuracy by selecting informative features [9]. Another adaptive mechanism-
based GWO (AMGWO) introduced a new nonlinear parameter control strategy and



an adaptive fitness distance balance mechanism to accelerate convergence and pre-
vent premature convergence, which inherently relies on an effective initial population
[10]. An improved GWO with Ant Colony Optimization (ACO) for population initial-
ization has been proposed to overcome suboptimal initial solutions in P2P lending
default prediction, showing improved accuracy and stability compared to the standard
GWO [7]. Similarly, hybrid approaches combining GWO with other meta-heuristic
algorithms, such as Genetic Algorithm (GA), often incorporate chaotic maps and
Opposition-Based Learning (OBL) for more uniformly distributed population initiali-
zation, aiming to enhance diversity and mitigate premature convergence in high-
dimensional hyperspectral image classification [8]. The idea is that a well-initialized
population allows the GWO to explore the search space more effectively from the
outset, leading to better feature subsets.

A poorly initialized population can lead to premature convergence to suboptimal
solutions or slow convergence rates. To alleviate this problem, chaotic maps have
been proposed as a non-random, yet sensitive to initial conditions, alternative for
initializing populations. Chaotic systems, despite being deterministic, exhibit highly
complex and unpredictable behaviors that can effectively explore the search space.

This article proposes the integration of chaotic initialization into the Grey Wolf
Optimizer for feature selection, specifically adapted for imbalanced datasets. The
proposed GWO-CFI approach aims to:

1. Leverage the global exploration capabilities of chaotic maps for initial popu-
lation diversity.

2. Employ the GWQ's balance between exploration and exploitation for effec-
tive feature subset search.

3. Utilize a Random Forest classifier as a robust evaluation model within a
wrapper-based feature selection framework.

The effectiveness of GWO-CFI is demonstrated on the "Diabetes Prediction Da-
taset" from Kaggle, comparing the performance of Logistic, Tent, and Sine map ini-
tializations against standard random initialization using weighted F1-score as the
primary classification metric. The dataset used in this study exhibits significant class
imbalance, which is a common characteristic of real-world medical data. This study
evaluates the method's performance directly on this imbalanced distribution without
applying any explicit data rebalancing techniques.

The rest of the paper is organized as follows: Section 2 provides a detailed over-
view of the Standard Grey Wolf Optimizer (GWO). Section 3 introduces the concept
of Chaotic Maps and details the Logistic, Tent, and Sine maps used for initialization.
Section 4 formulates Feature Selection as a Binary Optimization Problem. Section 5
describes the Random Forest Classifier used for evaluation. Section 6 presents the
Proposed Methodology (GWO-CFI), including data preprocessing, the fitness func-
tion, and evaluation metrics. Section 7 outlines the Experimental Setup, detailing the
dataset, preprocessing steps, and algorithm parameters. Section 8 discusses the Re-
sults and Discussion of the experiments. Finally, Section 9 concludes the paper and
suggests directions for Future Work.



2 Standard Grey Wolf Optimizer (GWO)

The Grey Wolf Optimizer (GWO) is a recent swarm intelligence meta-heuristic algo-
rithm proposed by Mirjalili et al. in 2014 [2]. It mimics the leadership hierarchy and
hunting mechanism of grey wolves in nature [3]. A grey wolf pack typically consists
of four main types of wolves:

- Alpha: The dominant leader, responsible for decision-making regarding hunting.

- Beta: The second in command, assisting the alpha in decision-making and acting

as a disciplinarian.

- Delta: Subordinate to alpha and beta, but dominant over omega. Deltas are re-

sponsible for scouting, guarding, etc.

- Omega: The lowest-ranking wolves, following the directives of the higher-

ranking wolves.

In the GWO algorithm, the best solution found so far is considered the alpha. The
second and third best solutions are designated as beta and delta, respectively. The
remaining candidate solutions are assumed to be omega. The omega wolves then ad-
just their positions and improve iteratively based on the guidance of these leading
wolves. The hunting process in GWO (optimization process) involves three main
steps: encircling prey, hunting, and attacking prey [1].

During iterations, each wolf i is represented by a position vector X;(t) =
{Xi1, Xiz, ..., Xiq} in a d —dimensional space. This vector consists of binary values,
where d signifies the number of variables in the problem being solved [3].

The wolf population is organized as a matrix with dimensions N x d, where N is
the number of wolves. Each wolf's position within this matrix is then assessed using a
fitness function f(X; (t)).

Grey wolves encircle their prey during the hunt. This behavior is modeled mathe-
matically as follows [1]:

D =|C.X, —X] 1)

Where X, X, and D designate respectively the current wolf, the positions of the

prey and the distance between them. The top three wolves (alpha, beta, and delta)
update their positions using:

X(t) = X, (t) — A.D @)

Where, vectors A and C provide direction for the wolves' movements [3]. They en-
sure that the wolves don't all move in the same direction, promoting exploration and
diversification of the search space. They are determined by the following equations:

A=2ar—a (3)
C=2n 4)

a=2(1-1) (5)



Here, r; and r, are two random vectors. The vector a decreases linearly from 2 to
0 as the iterations progress. In this context, t represents the current iteration and T is
the total number of iterations.

The position of each omega wolf (X) is updated based on the leaders' positions (al-
pha, beta, and delta) using the following equation:

X(t+1) = 2225 (6)
Where
X, =X, —A;. (Dy) X, = Xg — A,. (Dg) X; =Xs —As.(Dg)  (7)
And
Dy =1C;.Xq —X| Dg=|C;.Xg —X| Ds=|Cs5.X5 — X (8)

Omega wolves are limited in their ability to explore the search space independently
because they always follow the leaders. This restricted exploration increases the risk
of the algorithm getting stuck in local optima [4].

3 Chaotic Maps

Chaotic systems are deterministic, nonlinear systems that exhibit complex, pseudo-
random behavior despite following simple rules. Their key properties, such as sensi-
tivity to initial conditions, ergodicity (exploring the entire state space), and non-
periodicity, make them suitable for generating diverse initial populations for meta-
heuristic algorithms. Using chaotic maps can potentially improve the algorithm's
global search capability and prevent premature convergence. The values generated by
chaotic maps are typically in the range [0,1], which are then scaled to the specific
problem's bounds [6].

3.1  Logistic Map

The Logistic map is one of the simplest and most well-known chaotic systems. Its
equation is:
Xps1 = px (1 — xz) )

For chaotic behavior, the parameter p is typically set to 4, and the initial value x, in
(0,1)
3.2 TentMap

The Tent map is another simple piecewise linear chaotic map defined by:

2xp, 0<x,<0.5

Mha1 = {2(1 —x) 05<x,<1 (10)



The Tent map also generates values in the range [0,1]. It exhibits uniform distribu-
tion properties over its range, which is beneficial for population initialization [6].
3.3 Sine Map

The Sine map is a continuous chaotic map given by:
X1 = sin (7wx) (11)

Similar to the Logistic and Tent maps, the Sine map produces values in [0,1] when
Xy in [0,1]. It also offers good ergodicity for generating diverse initial values.

4 Feature selection as a binary optimization problem

The problem of feature selection is typically formulated as a binary optimization
problem [12]. The main step in this process is to determine the subset of features to
incorporate in the representation of the solution (see Fig.1). Each candidate solution
(wolf position) is a vector of length d equal to the number of features. The value 1
indicates that the corresponding feature is selected, while the value 0 signifies the non

selection of the feature.
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Fig.1. Representation of a solution in features selection

Since GWO operates in a continuous search space, a binarization strategy is re-
quired. A common approach is to use a threshold function [12]:

1 ifx>05

0 ifx <05 (12)

bin_feat; = {

Where, x; is the continuous value of the j*" dimension of a wolf's position, and
bin_feat; is the corresponding binary selection. This ensures that the continuous

search space of GWO is effectively translated into a discrete feature selection prob-
lem.

5 Random Forest Classifier

Random Forest is a machine learning algorithm that leverages multiple decision trees
to enhance predictive accuracy [5]. Each individual tree is trained on different, ran-
domly selected subsets of the data. For classification tasks, the final prediction is de-
termined by a majority vote among the trees' outputs, while for regression tasks, it's
an average of their predictions. This ensemble approach effectively boosts accuracy
and minimizes errors. Random Forest offers several key advantages that contribute to



its widespread use and effectiveness. RF is known by its strong robustness to overfit-
ting by aggregating predictions from numerous decision trees reducing variance and
leading to more generalized and reliable models [4]. Also RF is highly capable to
handle high-dimensional datasets. It performs well even when dealing with a large
number of features, making it suitable for complex real-world problems. Furthermore,
the algorithm demonstrates insensitivity to feature scaling, which means there's no
need to preprocess features by scaling them to a particular range.

6 Proposed Methodology: GWO-CFI for Feature Selection

The performance of any meta-heuristic algorithm, including GWO, is significantly
influenced by its initial population. Traditional random initialization can sometimes
suffer from:

- Non-uniform distribution: Random numbers might cluster in certain regions,
leaving other parts of the search space unexplored.

- Lack of ergodicity: Purely random sequences might not cover the entire
search space effectively over a limited number of initializations.

A good initial population should ideally possess two key characteristics:

1. Diversity (Exploration): The initial solutions should be spread out across the
entire search space. This increases the chances of starting near the global op-
timum and helps prevent the algorithm from premature trapping in local op-
tima.

2. Proximity to Optimum: Despite not always guaranteed, a diverse initializa-
tion might also include solutions that are already relatively good, potentially
speeding up convergence.

The proposed methodology integrates chaotic initialization into the Grey Wolf Op-
timizer for feature selection. The overall flowchart is depicted in Fig.2.
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Fig.2. Flowchart of the proposed GWO-CFI feature selection approach

6.1 Data Preprocessing

After cleaning data from null values and duplicates, the following steps are ensured:
1. Encoding: The "Diabetes Prediction Dataset" contains both numerical and
categorical features (numerical like BMI and categorical like 'gender' and



'smoking_history"). Categorical features like ‘gender' are converted into nu-
merical format creating new binary features.

2. Feature Scaling: Numerical features are scaled to a common range which
is [0,1]. This helps prevent features with larger numerical ranges from domi-
nating the distance calculations in optimization algorithms, although Ran-
dom Forest itself is less sensitive to scaling.

3. Stratified Data Splitting: The dataset is split into training and testing sets.
This ensures that the class distribution in both training and test sets is main-
tained, which is crucial for imbalanced datasets.

6.2  Fitness Function for Imbalanced Feature Selection

The fitness function guides the GWO in its search for the optimal feature subset. A
multi-objective fitness function is commonly used, balancing predictive performance
and the number of selected features. We aim to minimize this fitness function.
The fitness function f(S) for a binary feature subset S is defined as:
f(8) =ax (1 — F1_scoreWeighted) +(1—a)Xx
Number of selected features (12)

Total number of features

The weighted F1-score obtained by the Random Forest classifier trained on the se-
lected features and evaluated on the test set. Weighted F1-score is chosen because it
inherently accounts for class imbalance by weighting metrics by the number of true
instances for each label, providing a more reliable performance indicator than raw
accuracy for such scenarios. Maximizing this value corresponds to minimizing (1 -
F1-score). a is a weighting parameter, typically set close to 1 (e.g., 0.99), to empha-
size the importance of classification performance over feature reduction. A higher
alpha prioritizes a better F1-score, while a lower alpha puts more emphasis on reduc-
ing the number of features.

6.3 Evaluation Metrics

For the final evaluation of the selected feature subsets, especially on datasets with
natural class imbalance, multiple metrics are reported:
1. Fl-score (weighted): Harmonic mean of precision and recall, weighted by
class support. More robust than accuracy for imbalance.
2. Precision (weighted): The proportion of positive identifications that were ac-
tually correct.
3. Recall (weighted): The proportion of actual positives that were correctly
identified.
4. Number of Selected Features: Indicates the parsimony of the solution.
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Experiments

The present work utilizes the "Diabetes Prediction Dataset” from Kaggle
(https://iwww.kaggle.com/datasets/dat00700/diabetes-prediction-dataset).

7.1

Dataset

This dataset contains 100,000 samples and 8 features, plus 'diabetes' as binary target
variable (0 or 1). The dataset contains the following features:

gender (categorical: Female, Male, Other)

age (numerical)

hypertension (binary: 0, 1)

heart_disease (binary: 0, 1)

smoking_history (categorical: No Info, never, ever, current, former, not cur-
rent)

bmi (numerical)

HbAlc_level (numerical)

blood_glucose_level (numerical)

Target: diabetes (binary: 0 for no diabetes, 1 for diabetes).

The dataset exhibits significant class imbalance (Figure 3). Analysis shows a high
majority of individuals don’t have diabetes (class 0) compared to those having diabe-
tes (class 1) (approximately 91% Class 0 and 9% Class 1). This imbalance is a charac-
teristic of the dataset that is directly reflected in the training and testing sets, without
any explicit balancing techniques applied.

Number of individuals

Diabetes Non-Diabetes

Fig.3. Diabetes vs Non-Diabetes counts
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7.2 Preprocessing Steps

1. Cleaning: We performed data cleaning to remove null values and duplicate
entries from the dataset. After this process, the dataset was refined to 96,164
records.

2. Encoding: 'gender' and 'smoking_history' columns are one-hot encoded to
avoid multicollinearity. This expands the original 8 features into a larger set
of 15 features.

3. Scaling: All numerical features (including newly created one-hot encoded
features) are scaled to the [0,1] range.

4. Train-Test Split: The dataset is split into 70% training and 30% testing sets.

7.3 Algorithm Parameters

After loading and preprocessing the dataset, four different scenarios for GWO initiali-
zation are evaluated:
- GWO with Standard Random Initialization (GWO-SRI) (for baseline com-
parison)
- GWO with Logistic Map Initialization (GWO-LMI)
- GWO with Tent Map Initialization (GWO-TMI)
- GWO with Sine Map Initialization (GWO-SMI)
Due to its robustness and good generalization capabilities, Random Forest is a suit-
able choice as the evaluation model in our feature selection approaches.
The Grey Wolf Optimizer’s parameters used are:
- Population Size: 30 wolves
- Maximum Iterations: 50
The Chaotic Maps’ parameters considered are:
- Logistic Map, Tent Map, Sine Map are used for initialization, each with
their standard parameters and initial seeds chosen randomly in (0,1)
avoiding problematic points for Logistic map.
For the Random Forest Classifier, the number of trees is 100 and the class_weight
is None (Default behavior, no explicit weight adjustment for imbalance). For the fit-
ness Function, the chosen a is set to 0.99 (high weight on F1-score performance)

8 Results and Discussion

The experiments were conducted to evaluate the impact of different chaotic initializa-
tion strategies on the performance of GWO for feature selection on the diabetes pre-
diction dataset, which naturally exhibits class imbalance. No explicit data balancing
techniques were applied; the Random Forest classifier was trained directly on the
imbalanced training data.

The following figure gives the final fitness achieved by GWO-LMI, GWO-TMI,
GWO-SMI, and original GWO with random initialization after 50 iterations (see
Fig.4).
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Fig.4. Fitness evolution for the four scenarios

Due to the stochastic nature of meta-heuristics, slight variations might occur across
runs; however, general trends in performance are usually consistent. The displayed
iteration output shows the progress of the best fitness and selected features throughout
the optimization process.

This iterative output demonstrates how the GWO algorithm progressively refines
the feature subset and improves the fitness. Over iterations, the nhumber of selected
features might fluctuate, but the algorithm generally aims for a smaller, more effec-
tive set.

Table 1 summarizes the performance of the four GWO versions, differentiated by
their initialization methods, across the chosen metrics: Weighted F1-score, Precision,
and Recall.

Table 1.Performance comparison with basic GWO

Initialization Method Best Fitness Selected Features F1-Score Precision Recall

Logistic Map 0.0740 5 06936 06937 3600.9
Tfant Map 00755 6 05.924 00.925 2405.9
Sine Map 0.0748 6 02.925 0é925 2502.9
Standard Random 0.0780 7 06922 05.922 2200.9

From the results, all the three chaotic initialization methods used in experimenta-
tions (Logistic, Tent, Sine Maps) consistently outperformed the standard random
initialization in terms of the achieved best fitness (lower fitness) and generally result-
ed in better classification performance metrics (higher F1-score, Precision, and Re-
call). This suggests that the initial diversity and ergodic exploration provided by cha-
otic maps effectively guide the GWO algorithm towards better regions of the search
space from the outset.
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In this specific experiment, the Logistic Map-initialized GWO vyielded the best
overall performance, achieving the lowest fitness and highest F1-score, along with a
more compact feature subset of 5 features (age, hypertension, bmi, HbAlc_level and
blood_glucose_level). This might be attributed to the specific chaotic properties of the
Logistic map being well-suited for the problem landscape of this dataset. The reduced
number of features also lowers computational costs during model training and infer-
ence.

The overall F1-score and related metrics (Precision, Recall) are still robust, despite
no explicit data balancing techniques being applied. The use of weighted F1-score in
the fitness function and for final reporting is crucial here, as it inherently accounts for
the class imbalance by weighting metrics by the number of true instances for each
label. This provides a more accurate picture of performance across both classes than
raw accuracy alone, confirming that even without direct re-sampling, the selected
features can lead to models that perform reasonably well on both majority and minori-
ty classes.

8.1  Best features selected using GWO based chaotic initialization

In the end, the repeatedly selected features across the best subsets from chaotic initial-
izations often include:
- age
- hypertension
- bmi
- HbAlc_level
- blood_glucose_level These features are clinically well-known strong indi-
cators for diabetes, which adds confidence to the feature selection process.
'heart_disease' and specific smoking_history categories also appear,
demonstrating their relevance.

9 Conclusion

This article proposed and implemented an enhanced Grey Wolf Optimizer for feature
selection, integrating chaotic maps (Logistic, Tent and Sine) for robust population
initialization. This approach is applied to the diabetes prediction problem without
explicit data resampling. The GWO-CFI approach demonstrated superior performance
over standard random initialization. Chaotic initialization led to better fitness values,
improved classification metrics (F1-score), and often resulted in more concise and
clinically relevant feature subsets. This highlights the effectiveness of using chaotic
dynamics to improve the initial exploration capabilities of meta-heuristic algorithms,
even when working directly with imbalanced data. The selected features provide val-
uable insights for diabetes prediction, paving the way for more accurate and interpret-
able diagnostic models.

The algorithms require further validation across a more diverse range of datasets,
specifically those exhibiting higher dimensionality, to ascertain their generalizability
beyond the context of the 'Diabetes Prediction Dataset.' Future work will also investi-
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gate the integration of explicit imbalance handling methodologies to bolster perfor-
mance on skewed data distributions.
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