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Abstract. Managing traffic signals is a significant challenge for modern
transportation systems, contributing to congestion and environmental
degradation. Artificial intelligence (AI) techniques, including Reinforce-
ment Learning (RL), and, more specifically, Deep Q-Networks (DQN),
have demonstrated considerable potential in addressing these issues by
enabling efficient adaptive traffic signal control (ATSC). This paper com-
prehensively reviews DQN-based approaches applied to ATSC, focusing
on key performance metrics such as vehicle waiting time, queue lengths,
and traffic throughput. We explore how DQN addresses these challenges,
offering insights into its effectiveness in optimizing traffic signal manage-
ment at intersections.

Keywords: Intelligent Transportation Systems - Traffic Signal Control
- Reinforcement Learning - Deep Q-Network - Optimization.

1 Introduction

In today’s metropolitan environments, it is critical to establish an effective Traf-
fic Signal Control (TSC) system that can respond to the numerous changes that
occur throughout the day, particularly during periods of heavy congestion [1].
An effective traffic signal controller must integrate a range of advanced tech-
nologies—such as sensors, inductive loops, surveillance cameras, and intelligent
agents—to deal with the issues associated with TSC.

Traditional TSC methods often produce suboptimal performances due to
their reliance on static timing plans. In contrast, the integration of Artificial In-
telligence (Al)—especially Machine Learning (ML)—with the Internet of Things
(IoT) has paved the way for the development of Intelligent Transportation Sys-
tems (ITS) [2, 3]. These systems enable dynamic adjustment of signal timings in
real time, thereby enhancing the overall efficiency of urban traffic networks.

Reinforcement Learning (RL) is a ML model where an agent learns to make
decisions by interacting with an environment to maximize cumulative rewards
[4]. One of the foundational algorithms in RL is Q-learning, which estimates the
value of taking a particular action in a given state and updates these estimates
iteratively using the Bellman equation [5] . Although Q-learning has proven
effective in various discrete and small-scale problems, it struggles to scale to large
or continuous state spaces due to its dependence on tabular representations.

To overcome these limitations, Deep Q-Network (DQN) were introduced [6],
combining Q-learning with Deep Neural Networks (DNN) to approximate the
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action-value function. It incorporates techniques such as experience replay and
target network to stabilize training and improve convergence. These advance-
ments have led to significant revolutions in areas needing complex decision-
making, including TSC, where DQN has been applied to develop adaptive and
efficient control policies.

As shown in Fig. 1, this review is based on primary literature retrieved from
reputable databases, including IEEFE Xplore, Flsevier , and SpringerLink. These
databases were selected due to their wide coverage of high-quality peer-reviewed
research in the fields of artificial intelligence, transportation engineering, and
intelligent systems. Search focused on the period from 2019 to 2023, during
which significant advancements in DQN-based T'SC were published.
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Fig. 1. Indexed DQN-based TSC studies (2019-2023).

The selected sources include journal articles, conference proceedings, and
book chapters, offering a diverse and rigorous foundation for analysis.

The present review explores several key research questions: How does apply-
ing DQN improve traffic conditions? What are the observed effects of DQN-based
TSC on overall traffic efficiency? How does the design of the state, action, and
reward functions in DQN influence its effectiveness in TSC? What challenges and
limitations are associated with implementing DQN in real-world TSC systems?

The remainder of this paper is organized as follows: Section 2 presents an
overview of DRL, while Section 3 discusses the key challenges and requirements
of TSC. Section 4 provides a detailed review of DQN-based approaches for T'SC.
Section 5 outlines potential future research directions, and Section 6 concludes
the study by summarizing the main findings and their implications.

2 Overview of DRL

2.1 From RL to Deep RL

RL is a branch of ML in which an agent acquires decision-making skills through
interaction with an environment to achieve specific goals [4]. In contrast to su-
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pervised learning, which depends on pre-labeled datasets, RL allows an agent
to discover effective behaviors by interacting with its environment and receiving
evaluative feedback through rewards or penalties [4].

The agent explores various actions and receives rewards based on the out-
comes, gradually refining its strategy to optimize cumulative rewards over time.
The core components of RL include the agent, the environment, states, actions,
and rewards—elements that collectively define the learning and decision-making
process. This process is modeled as a Markov Decision Process (MDP) [4], de-
fined by defined by a set of states .S, a set of actions A, a transition probability
function P(s’ | s,a), and a reward function R that provides immediate feedback
for actions taken. It also includes a discount factor v € [0, 1], which weighs the
importance of future rewards, and a policy 7(a | s), which maps each state to a
probability distribution over possible actions. The agent attempts to develop an
optimal policy (noted 7*) that optimizes the expected cumulative reward (noted
G4) defined as:

Gy = ZVthHc (1)
k=0

To estimate the quality of state-action pairs under a given policy, RL algo-
rithms define the action-value function Q(s, a), which reflects the expected return
of taking action a in state s and following policy 7 thereafter. In ()-learning, the
update rule is based on the Bellman optimality equation [2]:

Q(s,a) = (1= a)Q(s,a) + o[ R(s, a) + ymax Q(s', )] (2)

Here, « is the learning rate, and s’ is the next state, and the term max, Q(s’, a’)
represents the highest predicted value achievable from s’. By repeatedly apply-
ing this update, the agent progressively refines its ()-values and learns to favor
actions that lead to higher cumulative rewards.

These traditional algorithms typically use tabular representations, which be-
come inefficient or infeasible when applied to environments with large-scale or
continuous state spaces [7] . This limitation has led to the development of more
advanced approaches that employ function approximation techniques—such as
DNN-—have been developed, leading to the emergence of DRL.

DRL combines the foundational principles of RL with the representational
power of DNNs to tackle complex decision-making problems. This synergy en-
ables agents to process and learn from high-dimensional inputs, proving espe-
cially effective in scenarios where traditional RL methods are insufficient. Sys-
tems based on this paradigm are characterized by three key capabilities: gener-
alization, autonomous learning, and intelligent behavior. [8].

In the domain of TSC, DRL-based approaches utilize the current traffic state
at an intersection to determine optimal strategies for selecting signal phases or
durations. Existing research in this area varies widely across four main dimen-
sions: state representation, reward function design, action selection strategy, and
agent architecture [9].
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2.2 Deep Q-Network (DQN)

The DQN is a value-based DRL algorithm that extends classical Q-learning by
using DNN. The architecture of DQN comprises several integral components
that work together to approximate optimal action-value functions. The DNN’s
input layer is responsible for processing the agent’s current environmental state
nu-merically. This is followed by one or more hidden layers, typically composed
of fully connected neurons, which extract and transform features from the input
into more abstract representations useful for learning. The output layer contains
one neuron per possible action, with each output representing the estimated
Q-value for taking a specific action in the given state.

To enhance learning stability, DQN employs two crucial mechanisms: ezpe-
rience replay memory and a target network [6,10]. Experience replay memory
stores past interactions as tuples—consisting of the current state, action, re-
ward, and next state—and samples from this memory during training to break
temporal correlations. The target network, a periodically updated copy of the
Q-network, generates stable target Q-values during learning to prevent destabi-
lizing feedback loops. A loss function is used to compute the divergence be-tween
predicted Q- values and target values derived from the Bellman equation, and
this loss is minimized through optimization techniques, typically using Stochastic
Gradient Descent (SGD) or its variants to update the network’s parameters.

Moreover, DQN leverages deep Convolutional Neural Networks (CNNs) to
process raw or structured input, especially in domains where spatial or temporal
relationships are critical. CNNs, inspired by the visual cortex in the human brain,
are particularly effective in extracting hierarchical features from input data [11].
Given the capabilities of DRL and the advancements brought by architectures
such as the DQN, it be-comes essential to examine how these techniques can be
applied to real-world problems. One prominent application domain is TSC, where
intelligent decision-making is crucial for optimizing traffic flow and reducing
congestion.

3 Traffic Signal Control (TSC): Challenges and
Requirements.

TSC plays a crucial role in urban mobility management, aiming to optimize
traffic flow, minimize congestion, and reduce travel time and CO2 emissions. A
traffic network consists of one or more intersections connected via edge nodes,
through which vehicles enter and exit the system. Each intersection includes
multiple legs and lanes, permitting vehicles to proceed straight, turn left, or
turn right [12].

Despite its centrality, the efficient management of traffic remains a chal-
lenge due to dynamic and unpredictable conditions, structural complexity, and
growing traffic demand. Furthermore, TSC systems must account for a range
of interdependent parameters—including signal phase sequencing, cycle length,
green phase duration, and offsets—which directly influence queue lengths, wait-
ing times, and throughput.

To better understand these challenges, it is important to distinguish be-
tween several TSC optimization domains. Network-level optimization focuses
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on synchronizing signal operations across intersections to improve overall traffic
progression. At the intersection level, optimization efforts target local condi-
tions such as queue lengths and arrival rates, aiming to prevent bottlenecks that
can propagate downstream. Roundabouts also present a unique set of optimiza-
tion problems, particularly in terms of cycle duration and delay minimization.
Cycle-level optimization involves adjusting red, yellow, and green phase dura-
tions based on local traffic dynamics, a task complicated by unpredictable de-
mand and the difficulty of correctly estimating optimal green times [13].

For instance, Inappropriate phase sequencing and ineffective green time al-
location can lead to congestion, cross-blocking, and green idle, especially when
timing doesn’t reflect real-time traffic demand. Accurate vehicle counts and unex-
pected incidents can degrade system performance. These challenges are further
compounded by the dynamic and high-dimensional nature of traffic environ-
ments, where conditions change rapidly and the impact of decisions may be
delayed or diffused across the network.

To address these complexities, modern TSC systems must incorporate adap-
tive mechanisms that can react in real time, operate effectively under uncertainty,
and scale across multiple intersections. Multi-agent systems offer a decentralized
framework for achieving this scalability and coordination, particularly in large
urban networks [14].These systems must also meet several functional require-
ments, including the ability to coordinate signals over large-scale networks, sup-
port priority policies for transit or emergency vehicles, and adapt to variable
network structures and demand patterns [15]. Signal timing strategies must be
synchronized to minimize delays and energy consumption [16], while predictive
capabilities become crucial in oversaturated conditions to proactively mitigate
congestion [17].

These requirements underline the limitations of traditional fixed-time or rule-
based systems and point to the potential of DRL-based methods—as a promising
approach to developing intelligent, data-driven traffic controllers.

4 DQN-Based TSC

This section outlines the integration of DQN into T'SC systems, provides a re-
view of studies applying this approach, and highlights key challenges that guide
current research efforts.

4.1 DQN-Based TSC Model

At the core of this model is an agent that interacts with the environment by
observing its current state, se-lecting an action (e.g., changing the signal phase),
and receiving feedback in the form of a reward. Over time, the agent learns
to optimize its behavior by approximating the optimal action-value function
using DNN. The environment in such model typically consists of one or multiple
intersections where an agent governs each intersection. The state is a numerical
representation of the traffic condition, com-monly including features such as
queue lengths, vehicle-waiting times, vehicle positions and speeds, the current
signal phase, and the elapsed time since the last phase change [18,19]. The action
space defines the possible signal operations the agent can take, such as switching
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to the next phase, extending the green light, or maintaining the current phase.
Thus, action selection significantly im-pacts both immediate and future rewards,
as well as the evolving traffic state [20]. Depending on the problem formulation,
the action space may be discrete—such as selecting the next signal phase [21], or
continuous, involving fine-tuning signal durations [22]. DQN, as a value-based
method, chooses actions that maximize estimated Q-values [23], while policy
gradient approaches learn a distribution over actions [24]. Actor-critic methods
combine both strategies, with the actor selecting actions and the critic evaluating
them based on observed rewards and states [25]. The learned policy continually
adapts to improve traffic efficiency at intersections.

The reward function guides learning by encouraging actions that improve
traffic flow. Commonly used reward designs aim to minimize average delay, queue
length, or vehicle waiting time, and may incorporate penalties [26] for phase
switching or congestion. This feedback is used to update the Q-values, which
estimate the expected return of taking a given action in a given state. Com-
mon reward metrics include average waiting time, travel delay, queue length,
and throughput [26]. Each metric influences trade-offs between traffic efficiency
and environmental impact—for example, minimizing waiting time can increase
vehicle speed and reduce CO 2 emissions, while focusing solely on emissions
may raise delays [26]. Positive rewards typically signal improved control [27],
whereas negative rewards indicate congestion [28], enabling the agent to refine
its decisions through continuous feedback.

The model uses a Deep Learning Network (DNN) with input, hidden, and
output layers to approximate the Q-function, stabilize learning with experience
replay and periodically updated target network for stable target values.

DQN agent learns adaptive traffic control policies, offering a scalable and
data efficient alternative to tra-ditional rule-based or fixed-time signal control
strategies in single-agent or multi-agent settings.

As illustrated in Algorithm 1, the training process of a DQN-based TSC
model involves iterative interaction between the agent and the traffic environ-
ment to improve its decision-making policy.

Algorithm 1. Pseudocode of the DQN-based TSC Algorithm

1. Initialize the @Q-network with random parameters 6.

2. Create a target network and set its = equal to 6.

3. Initialize an empty replay memory D.

4. For each training episode do:
5. Reset the traffic environment and observe the initial state sg.
6. For each time step ¢ within the episode do:

7. Select action a; using the e-greedy strategy.
8. Apply action a; in the environment.
9. Receive reward r; and next state syy1.
10. Store transition (s, at, 7, S¢41) in memory D.
11. Randomly sample a mini-batch from memory D.
12. For each sampled transition (s, a,r,s’):
— Compute target Q-value:

y=r+-y- H}la/,X Qtarget(slv al; 97)
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18. Update the Q-network by minimizing the loss function using gradi-
ent descent.
14. Every C steps, update 0~ + 6.

15. End for
16. End for

At each time step, the agent observes the current state, selects an action ac-
cording to e-greedy strategy, and receives a corresponding reward along with
the next state. These experiences—consisting of state, action, reward, and next
state tuples—are stored in an experience re- play memory to enhance learning
stability [29]. During training, mini-batches of stored transitions are sampled
randomly from the replay memory to update the DQN’s parameters, denoted
as 0, using gradient descent. The target Q-values are computed using a separate
target network with parameters 6, which is updated periodically to stabilize
learning [30]. The Q-network, parameterized by 6, learns to approximate the
action-value function Q(s, a; #), estimating the expected cumulative reward for
each action given the current state. Through successive updates that minimize
the temporal-difference loss, # encodes knowledge of traffic patterns, enabling
the agent to improve its decisions over time.

The training process continues until convergence criteria are met indicating
the agent has learned an effective traffic control strategy. An overview of the
DQN architecture is presented in Fig.2.
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Fig. 2. Overview DQN architecture used for TSC.

4.2 Literature Review

The following subsection reviews prior studies that have employed the DQN
model to address TSC challenges.

Since the introduction of the DQN model by [6], numerous studies have in-
vestigated its application to the TSC area.researchers. Ge et al. [31], utilized
real-time intersection data to reduce average waiting and travel times. Huo et
al. [32], proposed a DRL-based method leveraging high-resolution event-based
data, outperforming conventional approaches. Wu et al. [33] developed a Dou-
ble DQN with a dual-agent strategy, enhancing traffic capacity. Katragadda et
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al.[34], designed a DQN-based system to sequence green signals across inter-
sections, achieving a 30% improve-ment in wait time. Subba Rao et al. [35]
integrated real-time GPS data, leading to reduced vehicle wait times compared
to fixed-time control. Kim et Sohn [36], introduced a DQN-based green time al-
location system that surpassed conventional sequencing systems. Gao et al. [37],
used high-quality data to reduce cumulative delay (82%), queue length (66%),
and travel time (20%). Pan [38] proposed a reward-aware DQN method that de-
creased vehicle wait time by up to 100%, queue length by up to 100%, and total
travel time by up to 68%. Qi et al. [39] enhanced DQN to achieve a 26.7% reduc-
tion in average waiting time and improved queue management. A DQN-based
model in [40] demonstrated reduced cumulative vehicle delay, enhancing urban
TSC efficiency. Hu et al. [41] introduced a Multi-Agent DDQN that lowered wait
times and queues by 40-60% and increased speed by 10-18%. In [42], Deep Q-
learning reduced queue lengths by 9.7% and improved overall traffic flow. Shabab
et al. [43], proposed a real-time RL method, decreasing wait times by 18-53%
and conflicts by 19-25%. Krishnendhu et al [44] applied a Double Dueling DQN
(3DQN) to enhance traffic safety and efficiency by 42%. Finally, Shashi et al [45]
presented a dynamic DQN method that improved average vehicle delays. Table
1 summarizes the main contributions of these approaches.

Table 1: Key Studies on DQN-Based TSC Solutions.

Ref |Year|Approach Key Results

31] 2022  DQN Reduced AWT and travel time.

32| |2020 |DRL with high-resolution|Improved efficiency, adaptability, and cost-
event-based data effectiveness over traditional methods.

[33] [2023 [DDQN with a dual-agent|Increased traffic throughput and system
architecture robustness.

[34] 12023 |DQN-based  intelli-gent|Achieved 30% improvement in AWT.
control

35] {2024 |DRL (DRQN with RNN) |Reduced AWT versus fixed-time control.

36| 2022  DQN Optimized junction capacity and dynamic

green alloca-tion.
[37] |2017 [DRL Reduced delay (82%), queue length (66%),

and travel time (20%).

[38] 2024 [DQN-based real-time|Decreased AWT (up to 100%), AQL (up to

TSC 100%), and travel time (up to 68%).

[39] 2022 {Improved DQN Reduced AWT by 26.7%, and improved
queue handling.

[40] 2022 [DQN Decreased cumulative delay enhanced over-
all traffic efficiency.

[41] [2024 [Multi-Agent DDQN Reduced AWT and AQL by 40 60%, in-
creased speed by 10-18%.

[42] 2023 |Deep Q-Learning Reduced AWT and AQL by 9.7%, im-
proved cumulative reward.

[43] |2023 |DQN-Based RL Lowered AWT by 18-53% and traffic con-

flicts by 19-25%.
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[44] 12023 [3DQN for ATSC Improved safety and efficiency by 42% over
static timing control.
[45] 2021 [DQN Reduced AWT dynamically.

4.3 Challenges and Limitations of DQN-Based TSC

Despite the growing success of DQN approaches in TSC, several limitations re-
main. One key challenge is training instability, which arises from correlations in
sequential observations and the non-linear approxima-tions of DNNs [6]. Scal-
ability is another concern—while DQN performs well at single intersections,
extending it to large-scale networks leads to exponential growth in the state-
action space, increasing computational load and training time, thus limiting
real-time applicability [1]. Generalization is also problematic. Although DQN
agents theoretically learn through interaction with their environment, most TSC
research relies on simulators like SUMO, with limited real-world deployment due
to safety, infrastructure, and regulatory constraints. As a result, policies trained
in simulation may not transfer effectively to real-world settings [46]. Further-
more, designing appropriate reward functions is complex; ill-defined rewards can
misguide learning and produce suboptimal behavior. This challenge has moti-
vated the use of Multi-Objective Deep Reinforcement Learning (MODRL), which
enables agents to optimize multiple conflicting goals simultaneously [47, 48]. Fi-
nally, DQN models often depend on manually tuned hyper-parameters («, v and
€), whose optimal values are typically determined through costly trial-and-error
[49]. Addressing these challenges is essential to advance DQN-based TSC from
theoretical frameworks to ro-bust, deployable solutions in ITS.

5 Future Directions

Building on current limitations and promising research trends, future work on
DQN-based TSC should ex-plore the following key directions:

5.1 Federated & Hierarchical Multi-Agent Training

Hierarchical Federated Reinforcement Learning (HFRL) [50], combines hierar-
chical control with federated learning to support scalable, coordinated, and per-
sonalized traffic signal control across urban networks. When integrated with
DQN-based models, HFRL clusters in-tersections for localized federated train-
ing, enabling policy specialization, faster convergence, and greater robustness.
Notably, this integration reduces communication overhead and enhances learn-
ing stability, making DQN-based TSC more suitable for real-time deployment.
Recent studies [49, 51, 52|, confirm that HFRL improves scalability, adaptabil-
ity, and performance—effectively addressing several limitations of traditional
centralized or standalone DQN approaches.

5.2 Multi-Objective Optimization via Multi-Objective Deep RL

Multi-Objective DRL (MODRL) enhances traditional DRL by simultaneously
optimizing conflicting goals such as safety, efficiency, emissions, and fairness
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in TSC. Methods like Dueling Double DQN (D3QN) have shown effectiveness
in reducing conflicts, delays, and CO2 emissions, supporting sustainable urban
mobility [53-55]. Additionally, adaptive weight tuning frameworks offer strong
adaptability in mixed-autonomy settings, especially when leveraging connected
vehicle data and V2I communication, making MODRL a promising approach for
future intelligent traffic systems.

5.3 Graph-Based & Region-Based Coordination

Region-based coordination and graph-based learning are promising strategies for
scaling DQN-based TSC in large urban networks. Region-based methods divide
traffic networks into sub-regions to enable localized coordination, reduce compu-
tational complexity, and facilitate scalable learning—especially when inte-grated
with decentralized or federated frameworks. In parallel, graph-based approaches
like Graph Atten-tion Networks (GATs) model intersections as nodes and cap-
ture spatial dependencies between them. This enables more context-aware con-
trol decisions. Integrating these with DQN—such as in CoLight [56] and MGMQ
[67], which combines Double DQN with GAT and GraphSAGE—has shown no-
table reductions in travel time, delay, and queue lengths. Together, these ap-
proaches support localized optimization and global coordina-tion, making them
well-suited for deployment in ITS. Continued research is essential to harness
their full potential in dynamic, multi-modal urban environments. [58].

5.4 Enhancing Sim-to-Real Transfer and Continual Learning

Bridging the gap between simulation and real-world deployment is a key chal-
lenge for DQN-based TSC. Policies trained in simulation often degrade in real-
world use due to model inaccuracies, sensor noise, and unforeseen events. Incre-
mental update-aware training can enhance robustness in such dynamic condi-
tions [59]. Domain randomization—by varying simulator parameters like traffic
flow, vehicle behavior, and sensor input—exposes agents to diverse scenarios,
improving generalization. In [60] Miiller et Sabatelli showed that combining this
with meta-learning [61] boosts transferability across environments. Additionally,
Bayesian meta-DQN (BM-DQN), proposed by Zou et Qin [62] ), integrates prior
knowledge to enable faster adaptation in unfamiliar traffic contexts [62].

5.5 Integration with Connected and Automated Vehicles

The integration of Connected and Automated Vehicles (CAVs) significantly en-
hances DQN-based TSC by providing enriched state representations through V2I
communication. Unlike traditional sensors, CAVs offer real-time data on posi-
tions, speeds, and intentions, allowing agents to predict traffic patterns more
accurately and optimize signal timing proactively. This reduces observation un-
certainty and improves reward shaping, leading to faster convergence and supe-
rior DRL policy performance [63]. Additionally, CAV data supports multi-agent
DQN coordination across intersections, enabling shared deci-sion-making and
reduced network-wide delays [64]. As CAV adoption grows, the scalability and
learning efficiency of DQN-based TSC systems are expected to improve further.
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5.6 Integration with metaheuristics

Integrating metaheuristic algorithms with DQN and its variants (e.g., DDQN,
Dueling DQN) has shown promise in enhancing convergence, stability, and over-
all performance in complex TSC tasks. Particle Swarm Optimization (PSO) is
widely used to fine-tune DQN hyper-parameters, leading to faster conver-gence
and improved control, with observed reductions in travel time, queue length, and
emissions in SUMO-based simulations [65]. Similarly, Genetic Algorithms (GA)
have been applied to evolve interpretable decision trees, such as urgen-cy func-
tions, improving DQN-driven TSC performance [65]. This direction is critical
in DQN-based TSC, as it helps overcome issues like slow learning, poor policy
exploration, and coordination challenges in multi-agent settings. [66].

6 Conclusion

This paper has presented a comprehensive review of DQN applications in T'SC,
emphasizing its potential to revolutionize urban traffic management. With the
continuous growth of urban areas and the persistent challenge of congestion,
DQN-based approaches offer a data-driven, adaptive solution by optimizing sig-
nal timings in real time. By effectively handling high-dimensional state spaces
and learning traffic dynam-ics, DQN has demonstrated notable improvements in
reducing vehicle delays, minimizing queue lengths, and increasing intersection
throughput.

The literature reviewed confirms the increasing momentum of DQN-based
TSC methods, with success-ful deployments in various simulated and real-world
settings. Nevertheless, several limitations persist, par-ticularly in terms of scala-
bility to large, complex networks and integration with legacy infrastructure. Ad-
dressing these challenges will require advances in model robustness, the adoption
of hybrid frameworks (e.g., metaheuristic-enhanced DQN), and the deployment
of MARL systems to manage broader traffic ecosystems.

In summary, DQN represents a significant step forward in the evolution
of (ITS, with its adaptability and learning capabilities offering a path toward
smarter, more responsive, and sustainable urban mobility. Continued research
and innovation in this domain will be key to realizing the full potential of DQN-
driven traffic control in real-world environments.
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