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Abstract. Stroke remains a leading cause of mortality , necessitat-
ing the development of effective predictive models for early interven-
tion. This study proposes a robust framework for stroke prediction us-
ing the XGBoost algorithm, combining standard clinical features with
engineered features, optimized through advanced feature selection tech-
niques. We employ correlation based filtering using Spearman rank cor-
relation to eliminate redundant variables and SHapley Additive exPlana-
tions (SHAP) based ranking to identify the most important features. The
selected features are evaluated through a comprehensive set of metrics.
Our approach achieved a classification accuracy of 98.1%, F1-score of
98.24%, ROC-AUC of 99.75, and precision of 99.03%. These results
advance stroke prediction by simultaneously achieving high performance
and deployable efficiency in real-world healthcare settings.

Keywords: Stroke Prediction· XGBoost· SHAP· Machine Learning· Fea-
ture Selection· Correlation Based Filtering· Engineered Features.

1 Introduction

Stroke is a severe vascular disorder characterized by obstruction or reduction in
blood flow and oxygen supply to the brain, According to the World Health Orga-
nization, approximately 15 million people suffer from stroke each year, leading to
around 5 million deaths and another 5 million survivors experiencing long-term
disabilities [1]. This growing global burden highlights the urgent need for effec-
tive early detection and prevention tools such as machine learning (ML). Despite
recent advances in ML, many existing stroke prediction models face significant
limitations in terms of handling class imbalance, limited interpretability and fail
to leverage domain knowledge for feature engineering. This study addresses these
limitations by developing a stroke prediction model using the Extreme Gradient
Boosting (XGBoost) classifier. XGBoost is a boosting algorithm known for its ca-
pability to handle imbalanced datasets effectively, it operates by incrementally
building decision trees, where each subsequent tree is designed to correct the
errors of the previous one [2]. our model combines feature engineering, class im-
balance handling using SMOTEENN, and a two-stage feature selection strategy
integrating Spearman correlation filtering and SHAP based ranking. Two distinct
feature sets standard and engineered were evaluated through a comprehensive
set of metrics including accuracy, precision, recall, F1-score and ROC-AUC. Our
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approach demonstrates superior performance (accuracy of 98.1%, ROC-AUC of
99.75, precision of 999.03%) while involving an exhaustive search for optimal
probability thresholds, maximizing the F1-score of 98.24%. The remainder of
this paper is structured as follow: Section ?? reviews related work on stroke pre-
diction using ML. Section 3 details the proposed methodology. Section 4 presents
the experimental results and discussion, including comparative analyses. Finally,
Section 5 concludes the study and outlines directions for future research.

2 Related Work

The prediction of stroke risk using ML has attracted considerable attention
in recent years due to its potential to support early intervention and clinical
decision-making. The most recent studies that predict stroke risk using ML ap-
proaches will be discussed in this section. In [3] authors developed an ensemble
model that combines the random forest (RF), logistic regression (LR), and XG-
Boost techniques; the proposed model achieves a notable accuracy of 97.4%. In
[4] authors proposed combining XGBoost with optimized principal component
analysis (PCA) and explainable AI (XAI) to enhance both the efficiency and
interpretability of stroke risk prediction models. The proposed approach was
tested on two datasets, achieving accuracies of 95% in the same dataset. In [5]
authors proposed PCA-FA (Integration of Principal Components and Factors)
and FPCA (Factor-Based PCA) to enhance feature representation and improve
learning algorithm performance. The random forest approach achieved the best
results with an accuracy rate of 92.55% and an AUC score of 98.15%. In [6]
authors employed logistic regression for stroke prediction, The model achieves
over 95% accuracy, with comparative analysis demonstrating the interesting of
regularization techniques. In [7] authors used ML to develop robust models
with a focus on a sophisticated ensemble methodology. The Stacked Ensemble
model outperforms individual classifiers (Decision Tree, XGBoost, Random For-
est) with superior accuracy (97.9%), precision (98.2%), and F1-score (98.0%). In
[8] authors implemented a ML pipeline to predict stroke with SMOTE and ran-
dom oversampling techniques. Among the models tested the Random Forest with
random oversampling achieved the best performance, with a recall of 67% and an
AUROC of 84% In [9] authors proposed an optimized hybrid system combining
feature importance selection (36.3% feature reduction) with Random Forest clas-
sification, achieving 97.17% prediction accuracy through rigorous comparison of
five classifiers and three feature selection methods on SMOTE-balanced stroke
data. In [10] authors introduced a Dense Stacking Ensemble (DSE) model that
achieves 96% accuracy and 98.92% AUC on balanced data through integration
of SMOTE oversampling and multiple imputation techniques. In [11] authors
demonstrated that the Random Forest classifier, when combined with advanced
preprocessing techniques like SMOTE and grid search cross-validation, achieved
a high accuracy of 94.42% in stroke risk prediction. In [12] authors demonstrate
the effectiveness of XGBoost for stroke risk prediction, achieving 95% accuracy
and a 0.93% F1-score. In [13] authors presented a comparative study of seven
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ML models, including logistic regression, SVC, decision trees, XGBoost, and deep
neural networks, for stroke prediction. Before feature selection, the accuracy of
various models ranged between 91% and 94%, DNN achieve superior perfor-
mance (AUC: 82%). In [14] authors demonstrated that neural networks achieve
superior stroke prediction accuracy (95.16%) compared to other ML models (lo-
gistic regression: 95.04%, random forest: 95.10%). In [15] authors implemented
ML methods for stroke prediction have demonstrated that XGBoost, combined
with SMOTE for data balancing, achieved the highest accuracy of 95%, out-
performing Random Forest (94%) and Logistic Regression (82%). These results
highlight the effectiveness of ensemble learning in handling imbalanced clinical
datasets and improving diagnostic performance. Finally, from the above litera-
ture, ML techniques have proven highly effective in offering improved predictive
performance stroke datasets. In particular, ensemble learning has emerged as a
powerful approach,using the combined strengths of multiple models to enhance
stroke prediction performance.

3 Methodology

In this study, we used an XGBoost classifier to predict stroke, using standard
and engineered features. To enhance model performance and interpretability,
our approach integrates correlation-based filtering and SHAP-based feature se-
lection. We designed two main feature sets and evaluated model performance
across both, with and without feature selection. The proposed workflow begins
with the acquisition of a standard feature set, which is then expanded into an
engineered feature set informed by domain knowledge. This data passes through
preprocessing followed by techniques to handle class imbalance. After splitting
the dataset into training and testing subsets, correlation filtering is applied to
remove highly correlated features, resulting in a refined set of filtered features.
An initial XGBoost model is trained on this subset, followed by SHAP analysis
to rank features by importance. The top ranked features are selected to build
the final XGBoost model, which is then evaluated to assess its performance.
Figure ?? represents the workflow of the methodology.

Fig. 1. Methodology workflow for stroke prediction .

3.1 Standard Feature Set

The standard feature set consists of raw variables present in the original dataset
which was sourced from the Kaggle platform, specifically the "Stroke Prediction
Dataset" [16]. This dataset consists of 5110 observations, each containing 12
attributes, including:
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– Demographic attributes: Age, Gender, Residence type
– Health indicators: Average glucose level, Body mass index (BMI), Hyper-

tension, Heart disease
– Socioeconomic factors:Marital status, Work type and Smoking status

3.2 Engineered Feature Set

The engineered feature set extends the standard features with variables con-
structed using domain knowledge of stroke risk factors and statistical transfor-
mations. These features aim to better represent complex health states, capture
nonlinear relationships, and integrate synergistic risk factors [17]. Each engi-
neered variable was crafted based on clinical guidelines, published stroke risk
models, or intuitive logic derived from real-world patient data behavior.

Age-Derived Features Features such as age_squared, age_group, age_decade,
and age_risk_factor capture the well-documented exponential rise in stroke
incidence with age, particularly beyond age 55 [18, 19].

– age_squared: Models the nonlinear rise in stroke risk with age, acknowledg-
ing that risk accelerates rather than increases linearly.

– age_group: Categorical stratification into standard life stages (child to el-
derly), enabling the model to learn group-specific risk behaviors.

– age_decade: A coarse grouping used to detect decade-wise aging patterns.
– age_risk_factor: Binary indicator (Iage>55) reflecting a known inflection

point in stroke risk prevalence.

BMI and Glucose-Related Features Stroke risk is influenced by BMI, par-
ticularly in diabetic populations [20, 21]. Variables like bmi_category, bmi_risk_factor,
and bmi_prime reflect clinical obesity thresholds, while bmi_glucose_interaction
captures the combined metabolic stress of hyperglycemia and obesity [22].

– bmi_category: Translates BMI into clinical categories (underweight to obese)
– bmi_prime: Normalized as BMI

25 , offering a scale-invariant obesity measure.
– bmi_glucose_interaction: Captures the multiplicative effect of obesity

and elevated blood sugar

Glucose Metabolism Indicators Features such as glucose_level, diabetic_status,
and glucose_to_age_ratio are grounded in diabetes diagnostic guidelines [23]
and quantify glycemic burden relative to age [24].

– glucose_level: Categorized glucose levels based on clinical diagnostic cri-
teria (e.g., prediabetic, diabetic).

– diabetic_status: Binary indicator of diabetes, using a clinical threshold.
– glucose_to_age_ratio: A relative index of glucose burden adjusted for age,

hypothesizing that elevated glucose is more damaging at younger ages.
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Comorbidity and Cardiovascular Risk Composite indicators such as hypertension_heart,
cv_risk_index, and comorbidity_index reflect the synergistic impact of mul-
tiple cardiovascular conditions on stroke risk [25, 26].

– hypertension_heart: Composite indicator of co-occurring hypertension and
heart disease, capturing compounded cardiovascular risk.

– metabolic_syndrome_score: A cumulative index (0–4) reflecting the pres-
ence of obesity, hyperglycemia, hypertension, and age > 50—aligning with
metabolic syndrome criteria.

– cv_risk_index: A weighted score combining age, glucose, BMI, and comor-
bidities, inspired by cardiovascular risk calculators.

– comorbidity_index: Count of key conditions (hypertension, heart disease,
diabetes, obesity), offering a simple chronic disease burden score.

Lifestyle and Stress-Related Variables lifestyle_risk and vascular_stress
account for behavioral and physiological strain from smoking, sedentary work,
and vascular comorbidities—factors that indirectly modulate endothelial and
systemic stroke risk [27].

– lifestyle_risk: Composite score reflecting unhealthy lifestyle patterns:
smoking, obesity, and non-active work type.

– vascular_stress: A domain-inspired metric modeling systemic stress due
to age and vascular comorbidities, scaled to proxy endothelial strain.

Stroke Specific Risk Profiles The composite features age_glucose_index,
stroke_risk_profile, and biological_age were constructed to summarize
multifactorial stroke risk through clinically weighted aggregation, inspired by
established tools like the Framingham Risk Score [26, 28].

– age_glucose_index: Models interaction between aging and hyperglycemia
compound effect known to increase stroke incidence.

– stroke_risk_profile: A rule-based composite risk score reflecting expert-
driven weights on established stroke risk factors: age, hypertension, diabetes,
heart disease, smoking, and obesity.

– biological_age: A surrogate for physiological aging, derived from age and
risk-enhancing health conditions. It accounts for biological deterioration be-
yond chronological age.

3.3 Data Preprocessing

Effective data preprocessing is crucial to ensure high model performance. We
implemented a structured preprocessing pipeline composed of several key stages
that addressed missing values, encoding, normalization, and feature transforma-
tions in a consistent manner.
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Data Cleaning

– Missing Values:
• bmi: Converted to numeric and imputed using the median.
• Categorical variables: Imputed with the most frequent value.

– Outlier Handling:
• Entries with age < 1 were removed.

Feature Engineering Integration In addition to raw features, engineered
features were incorporated into the preprocessing pipeline. These were processed
in parallel with standard features to ensure consistent scaling and encoding.

Feature Categorization Features were grouped by type to apply appropriate
preprocessing techniques: numerical (’age’, ’avg_glucose_level’, ’bmi’, ’age_squared’....),
binary (’hypertension’, ’heart_disease’, ’ever_married’...), nominal categorical
(’gender’, ’work_type’...), ordinal (’smoking_status’...) and engineered (’age_group’,
’bmi_category’...).

Feature Scaling and Encoding Normalization (scaling features to a range)
and standardization (scaling features to have a mean of zero and a standard
deviation of one) are essential preprocessing steps that ensure that all features
contribute equally to the model’s performance. Encoding is transforming cate-
gorical variables into numerical format using techniques such as one-hot encoding
or ordinal encoding. This allows the model to process these variables effectively.
In our pipeline, scaling and encoding were applied according to variable type.
Numerical features were standardized and scaled using standard scaler to en-
sure uniform contribution. Ordinal variables like smoking status were encoded
ordinally to reflect known clinical risk hierarchies (never < formerly < currently
smoked), while nominal variables such as gender and residence type were one-hot
encoded to avoid imposing artificial order. Categorical and engineered variables
were encoded using one-hot encoding.

3.4 Data Imbalance Handling

The original stroke dataset exhibits significant class imbalance. To address this
problem we applied the SMOTEENN technique which is a hybrid approach
that combines the advantages of SMOTE (Synthetic Minority Over sampling
Technique) and Edited Nearest Neighbors (ENN). SMOTE generates synthetic
samples for the minority class, thereby enhancing representation, while ENN
removes ambiguous, noisy, and borderline instances based on nearest neighbor
rules. This dual-phase refinement not only balances the dataset but also improves
training quality by reducing noise and lowering misclassification risk [29].
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3.5 Feature Selection Strategy

To improve generalization and reduce redundancy, we applied two complemen-
tary feature selection techniques:

– Correlation-Based Filtering
– SHAP-Based Ranking

Correlation-Based Filtering To address multicollinearity and improve the
interpretability of the model, we applied a Spearman rank correlation analysis
for numerical and engineered features. Spearman correlation is a non-parametric
measure of monotonic relationships, making it suitable for datasets with non-
linear dependencies [30]. This strategy helps to preserve model stability while
minimizing redundancy [31]. In our work, we computed the full correlation ma-
trix and identified pairs with absolute correlation coefficients ≥ 0.85 using the
upper triangle of the matrix to avoid redundancy. For each correlated pair, we
retained the feature with Higher domain relevance, lower missingness and greater
predictive power [32].

SHAP-Based Ranking SHAP (SHapley Additive exPlanations) values were
employed to enhance model interpretability and capture non-linear relationships.
SHAP is a framework were used to quantify the contribution of each feature to
model predictions based on cooperative game theory that assigns each feature
an importance value, corresponding to its marginal contribution to the model’s
output [33]. SHAP is particularly suitable for explaining ML models because it
satisfies key properties such as local accuracy, missingness, and consistency [34].
In our study, SHAP values were computed using the Tree SHAP method on the
trained XGBoost model. We computed mean absolute SHAP values across all
samples and ranked features accordingly. The top N ranked features were selected
for final modeling based on their SHAP scores.

3.6 Data Splitting

In our model, the dataset was partitioned into training and testing subsets using
an 80/20 split. This strategy is widely adopted in ML research, as it allocates
a larger portion (80%) of the data for training, which improves the model’s
ability to learn from the data. The remaining 20% is reserved for testing. To
ensure consistency and reproducibility across experiments, a fixed random seed
was used during the split process [35]. This approach guarantees that the same
samples are used in each run, enabling reliable comparisons and performance
tracking.

3.7 XGBoost Classifier

An extreme gradient boosting method, known as XGBoost, is an ensemble learn-
ing technique that builds a series of decision trees in an additive manner. It
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optimizes a differentiable loss function using gradient descent and includes reg-
ularization terms to control model complexity and reduce overfitting [36]. XG-
Boost was selected as the primary classification model in this study due to its
high predictive accuracy, computational efficiency, and scalability. Moreover, its
ability to handle missing values internally and to manage imbalanced datasets
through parameter tuning and built-in objective functions makes it particularly
suitable for medical prediction tasks such as stroke classification [4]. To fur-
ther enhance model performance and address class imbalance, a specific set of
hyperparameters was tuned through empirical testing.

4 Results and Discussion

4.1 Model Evaluation Metrics

Given the highly imbalanced nature of the dataset, it was essential to go beyond
overall accuracy and include metrics sensitive to class distribution [37] and deci-
sion thresholds [38]. In our model, we implemented a suite of evaluation metrics
like accuracy, precision, recall, F1-score and ROC-AUC. To optimize the classi-
fication threshold, we performed a systematic sweep across a range of thresholds
from 0.1 to 0.9 in 50 evenly spaced increments. The optimal threshold was se-
lected based on maximizing the F1-score which is critical for clinical decision
making [39].

4.2 Results and Discussion: Standard Features

Correlation Matrix After correlation-based filtering, two pairs exhibited high
correlation using a Spearman correlation threshold of |ρ| ≥ 0.85. Removing
one member of each pair reduced features from 17 to 15 without impacting
downstream performance. The correlation matrix for stroke prediction is shown
in figure 2.

Fig. 2. Spearman correlation heatmap for the 17 standard features.

Model Performance The performance of our XGBoost classifier using only
the standard feature set is summarized in Table 1.
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Table 1. Model performance comparison using all versus final selected standard fea-
tures.

Approach Num Features Accuracy Precision Recall F1 Score ROC AUC Best Threshold
All Features 17 0.9748 0.9748 0.9780 0.9764 0.9969 0.8837
Final Selected 10 0.9743 0.9740 0.9783 0.9761 0.9966 0.8837

From the table 1 we can resume, the standard feature experiments validate that:

– Accuracy and F1 Score: Performance remained virtually unchanged after
reducing the feature set from 17 to 10 (Accuracy: 97.48% to 97.43%; F1
Score: 97.64% to 97.61%).

– Recall: Improved slightly (97.79% to 97.82%), indicating better identifica-
tion of stroke cases with fewer features.

– Precision: Remained stable (97.47% to 97.40%), showing no significant in-
crease in false positives.

– ROC AUC: Maintained a high value (99.69%), confirming excellent class
discrimination.

– Threshold: The optimal classification threshold remained at 0.8837, reflect-
ing re-calibration due to reduced input dimensionality.

ROC Curve Figure 3 presents ROC curves for all features (AUC = 99.69%)
and final selected (AUC = 99.66%). Both curves cluster near the top left corner,
indicating very low false positive and false negative rates across all thresholds.
The curves nearly overlap, confirming that performance is preserved after feature
reduction.

Fig. 3. ROC curves of standard features(all features vs final selected).

Confusion Matrix Figures 4 and 5 show the confusion matrices for the models
using all features and final selected features, respectively.
The reduction in false negatives (from 20 to 18) is clinically significant, reducing
the likelihood of missing true stroke cases. A modest increase in false positives
(from 23 to 26) is acceptable given the gain in sensitivity.

SHAP Analysis The SHAP summary plot ranks features by their mean ab-
solute SHAP value, offering insights into the contribution of each feature to the
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Fig. 4. Confusion Ma-
trix All Features.

Fig. 5. Confusion Ma-
trix Selected

predictions of the model. Figure 6 visualizes this ranking for the final selected
standard features. Features are ordered top-down from most to least influential.

Fig. 6. SHAP summary bar plot for Final Selected Model (Standard Features).

4.3 Results and Discussion: Engineered Features

Correlation Matrix Using the 46 engineered features, we computed a Spear-
man correlation matrix and applied a |ρ| ≥ 0.85 filter, which removed 18 highly
collinear predictors and reduced the set to 28 features without degrading down-
stream performance. The correlation matrix for stroke prediction using engi-
neered features is shown in Figure 7.

Fig. 7. Spearman correlation heatmap for all engineered features.

Model Performance The performance of our model using engineered features
is presented in Table 2.
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Table 2. Model performance comparison using all versus selected engineered features.

Approach Num F Accuracy Precision Recall F1 Score ROC AUC Best Threshold
All 46 0.9793 0.9809 0.9809 0.9809 0.9983 0.9000
Selected 20 0.9810 0.9882 0.9767 0.9824 0.9975 0.8837

Based on the results presented in the table, the key observations are as fol-
lows:

– Accuracy: Improved from 97.93% to 98.10% after reducing features from
46 to 20.

– Precision: Increased notably (98.09% to 98.82%), reducing false positives.
– Recall: Slightly decreased (98.09% to 97.67%), a reasonable trade-off for

higher precision.
– F1 Score: Rose marginally (98.09% to 98.24%), indicating improved bal-

ance.
– ROC AUC: Remained near perfect (99.83% to 99.75%), confirming excel-

lent class separation.

Additionally, the optimal classification threshold shifted 0.8837, reflecting a re-
calibration of the model decision boundary due to the reduced input dimension-
ality.

ROC Curve Figure 8 shows the ROC curves for both models. Both curves
lie close to the top left, indicating very low false positive and false negative
rates. The minimal overlap confirms that pruning 26 features did not materially
weaken the classification power.

Fig. 8. ROC curves of engineered features(all features vs final selected).

Confusion Matrix Below are the confusion matrices for the models with all
features (Figure ??) and final selected features (Figure 10 ) models using engi-
neered set: Key outcomes from the confusion matrices:

– True Positives: Both models perform equally well in identifying actual
stroke cases.This shows no degradation in the model’s ability to detect actual
stroke instances even after reducing the feature set by more than half (from
46 to 20).
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Fig. 9. Confusion Engi-
neered All

Fig. 10. Confusion En-
gineered Selected

– False Positives: Reduced from 18 to 13, a 28% drop.
– True Negatives: Increased from 776 to 780, improving specificity.
– False Negatives: Slight increase from 18 to 19, a marginal trade-off.

SHAP Analysis The SHAP summary plot in Figure 11 illustrates the global
importance of each engineered feature. Composite features like metabolic_syndrome_score,
age_glucose_index, and lifestyle_risk dominate the model’s predictive logic, un-
derscoring the effectiveness of domain-informed feature engineering.

Fig. 11. SHAP summary bar plot for Final Selected Engineered Features.

4.4 Comparative Analysis

All studies in the comparative table 3 have employed XGBoost as part of their
stroke prediction frameworks due to its robust performance and effectiveness
in handling imbalanced data. In contrast, our proposed method combines XG-
Boost with a comprehensive feature selection strategy using Spearman corre-
lation analysis and SHAP values,while also applying SMOTEENN to deliver a
more explainable and performance optimized model. Using only standard fea-
tures, our approach achieves an accuracy of 97.94%, surpassing most existing
works while using a reduced and interpretable feature set. More notably, with
the incorporation of engineered features, our model reached a state-of-the-art
accuracy of 98.10% outperforming all reviewed methods.
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Table 3. Comparison of stroke prediction methods in literature

Ref. Authors Methodology Performance
[1] Sundaram et al. RF + LR + XGBoost Ensemble Accuracy of

97.4%
[2] Mochurad et al. XGBoost + PCA + XAI Accuracy of

95%
[5] Hamada et al. Stacked (DT, XGBoost, RF) Accuracy of

97.9%
[10] Rohini et al. XGBoost + Adaptive Boosting Accuracy of

95%
[12] Gupta et al. Comparative ML Models Accuracy of

95%
– Proposed Method XGBoost + Correlation +

SHAP (Standard Features)
Accuracy of
97.94%

– Proposed Method XGBoost + Correlation +
SHAP (Engineered Features)

Accuracy of
98.10%

5 Conclusion

This study proposed an effective stroke risk prediction framework that inte-
grates correlation analysis and SHAP-based feature selection with an XGBoost
classifier, enhanced through the SMOTEENN resampling technique. The results
demonstrated that with engineered features, the model achieved outstanding per-
formance with an accuracy of 98.10%, a F1-score of 98.24%, and a ROC AUC
of 99.75% using only 41% of the input dimensionality.Similarly, for the stan-
dard feature set, the model maintained strong performance with an accuracy of
97.43% and a ROC AUC of 99.66%, despite a reduction in input dimensionality
by over 56%. These findings validate the effectiveness of the combined approach
in balancing data quality, interpretability, and predictive performance. The fu-
ture step includes integrating deep learning models, such as recurrent neural
networks (RNNs) or deep neural networks (DNNs), which can uncover deeper,
nonlinear relationships in patient data and improve prediction accuracy.
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