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Abstract. One of the significant challenges in modern traffic engineering is accu-

rate estimation of the traffic state, this involves precisely determining real-time 

traffic information, which is crucial for effective traffic management and the im-

plementation of intelligent transportation systems. To address this challenge, var-

ious estimation algorithms have been developed, most of which are based on the 

Kalman filter and its variants, offering varying degrees of accuracy. In this paper, 

we propose an improved traffic state estimation algorithm based on dual state 

correction using the Extended Kalman Filter and a Deep Feedforward Neural 

Network (EKF-DFNN). The estimated traffic variables are then fed into a Sup-

port Vector Machine (SVM) classifier to predict the traffic state. The proposed 

algorithm is compared to a baseline approach that combines the standard Ex-

tended Kalman Filter with an SVM classifier. The results demonstrate that the 

proposed EKF-DFNN algorithm outperforms the classical EKF based method in 

terms of classification accuracy. 

 

Keywords: Traffic state estimation, freeway traffic congestion, Extended Kal-

man filter, Deep Feed forward Neural Network. 

1 Introduction  

      Intelligent transport systems (ITS) significantly contribute to the enhancement 

of transportation efficiency, safety, and sustainability. However, the availability of ac-

curate data regarding the traffic variables such as flow, speed and density holds signif-

icant value for implementing effective intelligent transport systems, designed to traffic 
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control and management strategies, including congestion mitigation systems. Never-

theless, the absence or inaccuracy of information concerning the current traffic state 

can give rise to critical challenges and complications. The primary solution to this issue 

entails implementing traffic state estimation systems (TSE).  

TSE refers to the process of predicting traffic parameters (i.e., speed, density, and 

flows) based on a limited set of traffic variables that are collected from one or more 

detectors.  This operation may ensure the sustainability of the traffic congestion detec-

tion system and helps to avoid errors and systems interruptions. Three fundamental 

components are considered to characterize the TES approaches: the estimation method, 

the traffic flow model, and the used input data. In this work we used the METANET 

model [1] to describe the dynamic behavior of the traffic flow in a given freeway section 

of the road based on the mean traffic speed and density, which are considered as input 

data. 

    Since the early 1970s, the estimation of traffic variables has attracted the attention 

of numerous researchers [2-4]. This process involves techniques that derive the traffic 

state by leveraging prior understanding of traffic conditions and partial observations. 

Recently, several estimation algorithms have been proposed in the literature, with the 

majority being based on the Kalman filter and its nonlinear extensions. The Kalman 

filter [5] is a widely used technique for recursive state estimation in various fields, such 

as signal processing, control systems, and robotics. Furthermore, it provides a system-

atic and efficient approach to estimate the state of a dynamic system by incorporating 

measurements and modelling uncertainties. The extended Kalam filter was commonly 

used in the literature for TSE approaches due to its ability to handle nonlinearities. In 

addition, some improvements were proposed in the literature to enhance the estimation 

efficiency using the EKF filter. One such enhancement was the introduction of the It-

erated Extended Kalman Filter (IEKF) algorithm [6], which effectively tackles the 

problem of filter divergence that can emerge within the Extended Kalman Filter (EKF) 

algorithm. This divergence tends to manifest itself when noise is injected into the sys-

tem and a disparity between observed data and estimated system state arises. In order 

to reduce the computational time requirement, the authors in [7] propose to use the 

Broyden's rank-one update procedure to approximate the time-varying Jacobian matri-

ces of the process and measurements, which are necessary for the Extended Kalman 

Filter (EKF), at every time step. On the other hand, A.S.M. Bakibillah et al [8] proposed 

a novel adaptive-R Extended Kalman filter (AREKF) combined with a model-based 

data imputation technique to estimate traffic density. AREKF demonstrates its capabil-

ity to precisely estimate density even in scenarios where the noise covariance matrices 

are not precisely determined. However, speed estimation was not considered in this 

study. The EKF approach has a major limitation, since it requires that the state variables 

should be represented only in vector form. This limitation greatly restricts its perfor-

mance because it cannot accurately capture the complexities of multi-relational states 

in practice. To overcome this limitation, the authors in [9] introduced the Tensor Ex-

tended Kalman filter to handle various inputs, outputs, and state variables, all in flexible 

tensor formats. The proposed TEKF was applied to enhance the traffic prediction per-

formance. Nevertheless, the algorithms that involve tensor operations inherently entail 

https://www.sciencedirect.com/topics/mathematics/kalman-filtering
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substantial computational complexities. Chenran Li et al. [10] introduced a methodol-

ogy for state and parameter estimation that relies on the dual extended Kalman filter 

(DEKF) technique. This approach aims to attain precise states and time-varying param-

eters within a linear parameter varying system framework. The DEKF was constructed 

by using two separate filters: one for estimating the states and the other for estimating 

the parameters. The two filters were coupled through the state estimates, which are used 

as inputs to the parameter filter. This approach was constructed for model-based control 

in autonomous vehicles.  

In the work of Zoran et al. [11], a feedforward neural network was integrated with 

an extended Kalman filter to accurately estimate the state of a robot's pose. The EKF 

was used to dynamically adjust and optimize the weights of the feedforward neural 

network. This innovative hybrid approach enables the system to continuously learn and 

update a motion model for the mobile robot in real-time. 

In [12] the authors addressed the end-effector pose estimation problem of a 

tensegrity manipulator. The estimation procedure was based on the use of an extended 

Kalman filter and a deep feedforward neural network (FNN) with three hidden layers.  
The FNN was used before the EKF to improve the quality of the information acquired 

from marker measurements. Earlier, the authors in [13] proposed the utilization of a 

feedforward multi-layer perceptron, hereafter referred to as a feedforward neural net-

work (FNN) to address the issue of correcting estimation errors of an EKF arising from 

non-geometric error sources, including link deflection errors and gear backlash, within 

the context of a robot positioning task. An identical approach was employed in refer-

ence [14], where the initial estimation of the elongation of a linear spring actuated by a 

shape memory alloy wire is accomplished through an EKF. Subsequently, this estimate 

is refined and corrected using an FNN. 

     Unlike the approaches presented in [11] and [12], where the DFNN was utilized 

before the EKF Algorithm, and in [13] and [14], where the DFNN was employed after 

the EKF Algorithm, we propose to integrate the DFNN within the EKF, positioning it 

precisely between the prediction and update steps. This enables us to carry out a dual 

correction of estimated traffic states, firstly using the DFFN and secondly using the 

EKF. To the best of our knowledge, no previous work has adopted the proposed EKF-

DFNN combination for highway traffic state estimation. 

     The rest of the paper is organized as follows: in the section 2 we present the 

adopted ITS system and the proposed EKF-DFNN filter.  The main obtained results are 

discussed in section 3, and finally a conclusion is provided in section 4. 

2 Methodology 

    The road traffic state estimation system adopted in this work is illustrated in Fig-

ure 1. This system as introduced in [15] is specifically designed to classify the traffic 

flow within a freeway section as either free or congested. Fixed camera sensors have 

been installed individually along three distinct road sections (i-1, i, i+1), capturing traf-

fic video recordings. Then the mean traffic speed and density are automatically meas-

ured using the image processing technique proposed in [16].  
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2.1 Macroscopic model 

The extracted traffic parameters from the three sections were used to calculate traffic 

speed and density aggregates according to the METANET model, as described by the 

following equations: 
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where : 

∆𝑖 is the length of section i;  T is the model time step; 

𝜌𝑖(𝑘), 𝑣𝑖(𝑘), 𝑞𝑖(𝑘), and 𝑟𝑖(𝑘)  are, respectively,  the vehicle density,  the average 

speed, the traffic flow, and the on-ramp inflow, all in section i at time kT; 𝑣𝑓   and 

 𝜌𝑐𝑟are, respectively, the free speed and the critical density; 𝑎 is an exponent parameter;  

𝜆𝑖 denotes the number of lanes in section i; 𝜏 is a time constant; 𝜈 is an anticipation 

constant; 𝛿 is an on-ramp constant, x is a constant parameter used to keep the third and 

fourth terms limited when 𝜌𝑖 becomes small; 𝜉𝑖
𝑣(𝑘) and 𝜉𝑖

𝑞(𝑘) are zero mean white 

Gaussian noises added to reflect the modeling inaccuracies.  

Eq. (1) describes the conservation of vehicles. It is, therefore, unaffected by noise. 
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Fig. 1. The adopted intelligent transport system 
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2.2 Traffic State Estimation 

    The Extended Kalman Filter is integrated with a Deep Feedforward Neural Net-

work, in this work, to enhance the traffic state estimation accuracy. The proposed EKF-

DFNN scheme is presented in Figure 2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this Figure: 

- (𝑥k, 𝑃k) are, respectively, the state space vector and the corresponding covariance ma-

trix at time kT, with: 

𝑥𝑘 = [
𝜌𝑖(𝑘)

𝑣𝑖(𝑘)
], 

where 𝜌𝑖(𝑘) and 𝑣𝑖(𝑘) are, respectively, the speed and the density at time k in high-

way section i. 

- f  is the nonlinear function  that relates the state vectors 𝑥𝑘  and 𝑥𝑘−1: 

𝑥𝑘 = 𝑓𝑥𝑘−1 + 𝑢𝑘, 

where  𝑢𝑘 is the process noise, assumed to be white and Gaussian, with zero mean.  

- A denotes the matrix of the partial derivatives of f with respect to x, defined as:  

𝐴𝑘−1 =
𝜕𝑓𝑘−1

𝜕𝑥
|

𝑥𝑘−1
+

 

-  H denotes the measurement matrix, given by: 

 H = [
1 0
0 1

]; 

- R and V represent the measurement noise and the process noise covariance matri-

ces. 

     Since its computational time is reduced compared to other nonlinear filters, such 

as the particle filter and ensemble Kalman filter, the EKF has been used in various other 
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Fig. 2. The proposed EKF-DFNN blocks diagram 
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real-time applications, such as navigation systems. Furthermore, the extended Kalman 

filter reduces the problem of nonlinear filtering to that of linear filtering by linearizing 

the state and measurement equations. The equations which govern it are those of the 

linear Kalman filter in which certain matrices are replaced by Jacobian matrices. How-

ever, in practice, the use of the EKF has a well-known drawback: the process of linear-

ization can lead to a highly unstable filter.  

To overcome this issue, we propose in this work to first correct the predicted state 

space using the DFNN, and then apply the linear correction formula of the EKF filter, 

as depicted in Figure 2. 

The feed forward neural network is a fundamental neural network model, in which 

each unit receives input solely from the previous layer and forwards it to the next layer, 

allowing data to flow sequentially through the network. Moreover, the FNN serves as 

the foundational architecture for various other neural network models, including con-

volutional neural networks, radial basis functions, and many others.  

The deep FNN network adopted in this work comprises an input layer, followed by 

a number of hidden layers, then, an output layer. All these layers are fully connected. 

The dimensionality of the input layer is  two as well as the output layer, including the 

mean traffic speed and the mean traffic density. 

3 Results and Discussion 

 In this work we used the US (United States) Highway 101 (US 101) video dataset, 

also known as the Hollywood Freeway, which was collected by researchers of the 

NGSIM (Next Generation SIMulation) program in Los Angeles (NGSIM dataset 2005) 

[17]. This dataset includes videos captured by various cameras placed at different sec-

tions of the highway.  

Firstly, each 15-minute video segment is divided into shorter sequences lasting 5~6 

seconds. This process resulted in a total of 166 video sequences for each highway sec-

tion. Each video sequence comprises 58 to 61 frames, recorded at a rate of 10 frames 

per second, with a resolution of 320 × 240 pixels. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Example of frames from the US 101 traffic video dataset. The sample frames depict 
two traffic conditions in the middle section, coarsely categorized as light (top row) and 

congested (bottom row). 
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Subsequently, a hand-labeled ground truth that characterize the traffic conditions 

within the middle section of the highway was established. Based on this ground truth, 

the 166 videos were categorized into two classes: 109 videos representing heavy traffic 

conditions (characterized by slow or stop-and-go speeds) and 57 videos depicting light 

traffic conditions (representing normal speeds) [15]. In Figure 3, we present a repre-

sentative selection of video clips from this dataset. The extent of the full highway in-

cluding the three section is presented in Figure 4. 

The raw measurements, which are the mean traffic speed and mean traffic flow, were 

extracted from the video sequences using the method presented in [16].  

The parameters of the macroscopic traffic flow model were set as in [15] as well as 

the measurement and the process noise covariance matrices for the EKF filter. The in-

itial state vector was set equal to the first measurement vector, and the covariance ma-

trix was set to:  

P0 = [
0.01 0.1
0.1 1

]. 

 

 

 

 

 

 

 

 

 

 

 

 
The predicted state vector was injected in the DFNN model to perform a prior 

smoothing of the measures as illustrated in figure 5. 

 

 

 

 

 

 

 

 

 

 

The DFNN training step was performed using the measured vector and the corre-

sponding estimated vector. 

         Exit (i+1)                         Middle(i)                                Entry(i-1) 

Fig. 4.  Sections of the studied road.  
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Fig. 5.  DFNN correction 
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 The following pseudo-code explains the running of the proposed DFNN-EKF algo-

rithm. 

 

 
  

 

 

 

 

 

 

 

To assess the proposed state estimation approach, we input the estimated state vec-

tors into the SVM classifier to classify the traffic into two classes: free and congested.  

The classification procedure was carried out using a 4-fold cross-validation method-

ology. This means that we allocated 75% of the dataset for training and kept 25% for 

testing. Using trial and error, it was found that for the SVM, a radial basis function 

Kernel (RBF) and the Gaussian Kernel give the best results.  

The DFNN network was trained using a function that updates weight and bias values 

according to the resilient backpropagation algorithm. We conducted several tests using 

different numbers of hidden layer ranging from 1 to 8, and an arbitrary selection of 

neurons numbers. 

Table 1 presents the obtained classification accuracies. It can be observed from this 

table that the best classification result was obtained with 5 hidden layers.  

In table 2 we compare between this result and the result obtained using the classical 

EKF, as reported in [15]. As it can be observed, smoothing the noisy measurement by 

either the EKF or the DFNN-EKF improves the classification accuracy. It can also be 

observed that integrating a DFNN into the EKF, enhances the performance. It mainly 

improves the detection of the congestion, as can be seen in the confusion matrices pre-

sented in Figures 6. 

 

TABLE I.  CLASSIFICATION ACCURACY VS NUMBER OF  LAYERS  

 

 

Xe=X0                                 //initial state  

For i=1 to N                    // number of measures 

Pe=Prediction     // using EKF 

       Net=Training (measure(i), Xe)     // DFNN 

X=Simulation (Net, Pe)                 // DFNN 

Xe=Update(X)                                   //using the EKF 

Save (Xe) 

end 

Number 
of layers 

1 2 3 4 5 6 7 8 

Numbers 
of neu-

rons 
20 20,15 20,15,5 

20,15, 
10,5 

20,15, 
10,5,4 

20,15, 
10,5,4,3 

20,15, 
10,5,4, 

3,2 

20,15, 
10,5,4, 
3,2,1 

Accuracy 
(%) 

90.99 92.78 92.78 92.18 93.37 88.02 90.99 88.02 
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TABLE II.  EKF VS EKF-DFNN 

 
 

 

 

 

 

 

 

  

 

 

 

4 Conclusion 

Accurate estimation of traffic conditions contributes to build safer and more efficient 

transportation networks. In this paper, we propose an approach to address the chal-

lenges of traffic state estimation, particularly in dynamic and noisy real-world environ-

ments. The proposed approach is based on the combination of the Extended Kalman 

filter and the Deep feedforward neural network. As a result, the predicted vector state 

benefits from dual correction instead of just one, leading to an enhancement in traffic 

classification accuracy. The suggested method is suitable for real-time applications be-

cause the EKF runs in parallel with the DFNN.   

In terms of perspective, our goal is to further refine and enhance this approach to 

achieve even greater accuracy in traffic state recognition by incorporating more sophis-

ticate deep learning architectures. 
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