
People‘s Democratic Republic of Algeria
Ministry of Higher Education and Scientific Research

University Mustapha Stambouli of Mascara
Faculty of Exact Sciences

HPC Cluster Emir
A short introduction to high performance computing

Presented by

Benaoumeur Bakhti

Supercomputing Center: University of Mascara

Mascara 2023

Contents

1 Introduction 1

2 What is an HPC Cluster? 3
2.1 Cluster architecture . 3
2.2 Cluster nodes . 3
2.3 Compute power . 4
2.4 Fast Interconnect Network . 5
2.5 External infrastructures . 6

2.5.1 Cooling systems . 6
2.5.2 UPS Sysetms . 8

3 A brief overview of parallel programming 8
3.1 What is parallel programming? 8
3.2 Why parallel programming? 9
3.3 Paralle Programming: Models and Languages 11

3.3.1 Shared Memory Programming 11
3.3.2 Distributed Memory Programming 12
3.3.3 GPU Programming . 13
3.3.4 Hybrid Programming 14

4 Presentation of the HPC Cluster Emir 15
4.1 HPC Custer Emir Hardware 16
4.2 HPC Custer Emir Software 17

5 Accessing the HPC Cluster Emir 18
5.1 On Linux . 19
5.2 On Windows . 21
5.3 Transferring files between PC and Cluster 27
5.4 Submitting Job to the Cluster 28

5.4.1 What is Slurm . 29
5.4.2 Determine resources for job 29
5.4.3 Create a Batch script for the job 30
5.4.4 Modules: Setting up your environment 37
5.4.5 Submit and check the status of a job 41
5.4.6 Retrieve output . 43
5.4.7 Slurm most used Commands 43

6 A short introduction to Linux command 44

7 References 46

Appendices 46

Appendix A MobaXterm 46

Appendix B Singularity Containers 52

3

1 Introduction

This document is intended for anyone who is new to using the High Per-
formance Computing (HPC) Cluster or Supercomputer and wants to work
with the HPC Cluster Emir of the University of Mascara. It is also in-
tended for students and researchers of other universities in Algeria as all the
existing Clusters in Algeria (belonging to the CERIST) share the same ar-
chitecture and all are using SLURM (see sections below) for cluster resource
management. The document can be helpful and may also contain important
information for experienced users who are already familiar with the subject.
This guide does not claim to be complete, but rather should, on the contrary,
enable the simplest possible introduction to work with Clusters. Further ex-
tension of this guide is a work in progress and will be shared in the near
future.

The cluster showcased here is the HPC Cluster Emir of the University of
Mascara. An important thing to note here is that an HPC may not be faster
than one small single computer only if cluster parallelism is exploited. The
latter becomes a hot topic in modern computing and groundbreaking scien-
tific discoveries have been made based on using the HPC. Thus, people are
strongly encouraged to take part in this development. The strength of the
HPC cluster lies in the large number of tasks that can be performed simul-
taneously. Parallelism can be done either via programming many processors
(CPU: Central Processing Unit) using MPI (Message Passing Interface) or
OpenMP (Open Multi-Processing) or via parallel programming of the GPU
(Graphics Processing Unit) of the graphic card using either CUDA (Com-
pute Unified Device Architecture) or OpenCL (Open Computing Language).
CUDA works only with Nvidia graphic cards, however, programming with
OpenCL has been implemented on a vast array of graphic cards including
AMD, Intel, and Nvidia GPUs. The programming language itself is not the
aim of this tutorial but the reader is advised to check the large amount of
information, examples, and tutorials on the different programming languages
on the web.

Due to the necessity of High Performance Computing, almost all software
in physics, chemistry, biology or engineering have been extended to work on
HPC clusters and parallel computers. Thus, this tutorial is intended to pro-
vide the teachers/researchers and students of the University of Mascara with

1

the necessary tools to use correctly the HPC Cluster Emir.

Finally, if you have any questions or suggestions for improvement or if
you find errors in the text, please do not hesitate to send me an email at
benaoumeur.bakhti@univ-mascara.dz or at hpc.emir@univ-mascara.dz.

Have fun and success working with the Cluster

Mascara 2023 B. Bakhti

HPC Cluster Voltage stabilizer

UPS Cooling system

2

2 What is an HPC Cluster?

2.1 Cluster architecture

An HPC cluster or a Supercomputer is a set of computers (or servers), called
nodes, connected to each other via a fast interconnection network and share
a common storage unit. A simple schematic of an HPC cluster is shown in
Fig. (1). In real clusters, the architecture is optimized in terms of communi-
cation speeds between nodes, storage capacity, processor and graphics card
performance, and space occupied by the cluster.

Figure 1: A simple architecture of an HPC Cluster.

2.2 Cluster nodes

Depends on the type of tasks to be done on the HPC cluster, the later can
be configured with different types of nodes such as:

3

• Login node: it provides an external interface to the HPC cluster. Users
wishing to run their jobs can access the Cluster only via the login node.
The latter is intended for basic tasks such as uploading or retrieving
data to or from the cluster. It can also be used for editing scripts,
submitting, checking, and monitoring jobs, and so on. The login node
can be used (though it’s not recommended) to run small jobs that do
not require a lot of computational resources.

• Administration or management node: it controls and performs the
housekeeping for the cluster and in many cases, it serves also as the
login node.

• Storage node: Most of the data in an HPC cluster is stored in a separate
unit called the storage node which contains many drives configured
using RAID technology (Redundant Array of Independent Disks). The
storage space of the storage node is shared with all other nodes in the
cluster. The data is stored or retrieved from the storage node across
networks using the network file-sharing protocol NFS.

• Compute nodes: There is a large number of compute nodes in a typ-
ical cluster. Compute nodes provide computational resources such as
processors cores, storage, RAM, and GPUs required for computations
and they are the nodes on which work runs.

• Visualization node: it allows processing, monitoring, and visualizing
data using 2D and 3D graphical applications.

• Virtualization node: it allows using virtualization technology such as
containers in which user environments can be separated from the pro-
vided machine hardware, operating system, or software setup on a clus-
ter.

2.3 Compute power

The performance or Computing power of an HPC cluster is usually expressed
in Flop/second (or Flops) number of floating point operations per second. A
simple example of a floating point operation is the multiplication (or addi-
tion) between two floating numbers 2.278*5.106. In the HPC world, the most
used multiples of the flop are gigaFlops (1GFlops = 109Flops), teraFlops

4

(1TF lops = 1012Flops), petaFlops (1PFlops = 1015Flops), and exaFlops
(1EFlops = 1018Flops). Fig. (2) shows the Fugaku supercomputer which
was the most powerful cluster in 2020/2021. It has been built by Fujitsu at
the Riken Center for Computational Science in Kobe, Japan and it has a
speed of 1.42 exaFlops.

Figure 2: Fujitsu Fugako cluster with 1.42 exaFlops computing power was
selected as the most powerful HPC cluster in the world in 2020/2021 (Image
from Fugaku).

Starting from May 2022, the most powerful supercomputer in the world is
the Frontier which is hosted at the Oak Ridge Leadership Computing Facility
(OLCF) in the USA and has a speed of 1.685 exaFlops.

2.4 Fast Interconnect Network

The communication between nodes is done via a hardware technology called
the interconnect network. The communication strategy impact directly the
performance of the cluster on one hand in terms of the speed at which the
nodes process data between them and on the other hand on how fast they
reach the shared storage space. Interconnect performance is measured with
two factors: bandwidth and latency. Bandwidth is the rate at which data
can be moved between nodes and is measured in megabytes (MB) per second.
Latency is defined as the time spent in setting up access to a remote node so
that communications can occur. There are many interconnect technologies
used in the HPC cluster such as the Ethernet and the InfiniBand. While

5

https://en.wikipedia.org/wiki/Fugaku_(supercomputer)

the former is widely used, it is well known that its underlying protocol has
inherent limitations preventing low-latency deployments in HPC clusters. A
better solution is the Infiniband technology which features very high through-
put and very low latency and it allows for very fast (today Nvidia Mellanox
NDR Fig. (3) and can deliver up to 400GB/s throughput) communications
between the nodes.

Figure 3: Nvidia Mellanox NDR InfiniBand Adapter (Image from Nvidia
Mellanox).

2.5 External infrastructures

High availability of an HPC cluster requires running the nodes at 100But
working continuously and effectively creates two issues. On one hand, HPC
clusters consume a large amount of power densities of up to 100kW per rack,
and sometimes higher. On the other hand part of the consumed power is
transformed into heat energy that can harm the system. The solution for
the first issue is to use UPS systems and power generators while overheating
requires a specialized and highly efficient cooling system.

2.5.1 Cooling systems

Depends on the density of the HPC configration, there are four main tech-
nologies available for cooling, and selecting the right option is as important as
choices around hardware and software. These technologies air cooling, water
cooling, rear door heat exchangers (RDHX), and finaly Immersion cooling.
Air cooling is the most simple, cheaper and it relies on fans to carry heat
away from components. But it can’t keep up with the growing density of

6

https://www.pny.com/professional/explore-our-products/networking-solutions/infiniband-adapters
https://www.pny.com/professional/explore-our-products/networking-solutions/infiniband-adapters

computing environments. In addition, cooling an HPC system requires high-
speed fans which generate significant noise.
Because of this, liquid or water cooling becomes the standard and most pop-
ular technology used in HPC today. Here, water is pumped through a closed
loop passing through the HPC cluster and as the liquid heats up, it circu-
lates and moves away from the hot components, creating a fow that keeps the
component cool. Water cooling technology provides a good balance between
performance and cost of set-up and infrastructure.
RDHX is a mixture of air and water cooling device that is attached to the
back of the racks of the cluster. The HPC cluster exhausts hot air through
the heat exchanger of the RDHX. The heated liquid passes through a cooling
towers connected to an external chilled water system. This will cool the air
back to the HPC cluster.
Immersion cooling directly immerses electronic parts in a non-conductive liq-
uid (typically oil) without risk of electrical conductance across the computer
circuits. This technology support increasingly dense HPC configurations but
on the other hand it requires huge modifications in the HPC installations
and also it can make maintenance of changing components very tricky. An
example of air and water cooling device is shown in Fig. (4)

Figure 4: RDHX cooling system which combines air and liquid cooling de-
vices (Image from upsite).

7

https://www.upsite.com/blog/for-most-data-centers-liquid-and-air-cooling-will-not-be-mutually-exclusive/

2.5.2 UPS Sysetms

A UPS (Uninterruptible Power Supply) is a battery backup that supplies
power to the HPC cluster in case of power outage or voltage drop. The
UPS system must provide enough time so that work and data can be saved,
and then all applications and operating systems cleanly and securely closed.
This prevents equipment failures that sometimes happen when the power is
rapidly lost.

A UPS unit alone will only keep the nodes powered for a limited amount
of time, usually less than 30 minutes. To extend this period, the UPS system
can be supported by a power generator (such as a diesel generator) that can
kick on in case the power grid goes offline. The UPS backup time must
be large enough for the power generator to start and reach its steady-state
regime.

3 A brief overview of parallel programming

In this section, we give a very short introduction to parallel programming
models and the different parallel architectures. However, the section is not
aimed at providing a comprehensive presentation of parallel programming
or how to do parallel programming using different programming languages.
Instead, we refer to some useful books that should be read (with practice) to
build up effective programming skills

3.1 What is parallel programming?

Parallel programming or similarly parallel computing or parallel processing
Fig. (5) is a process in which a large problem is decomposed into smaller
independent tasks that can be executed simultaneously on different proces-
sors. This is to be distinguished from the standard serial or sequential pro-
gramming Fig. (6) in which the problem is divided into a discrete series of
instructions executed sequentially on a single processor.

8

Figure 5: Parallel Programming: A large problem is subdivided into four
parts and each part is executed on a single processor (Image from Lawrence
Livermore National Laboratory).

Figure 6: Serial Programming: The problem is divided into instructions
executed sequentially by a single processor(Image from Lawrence Livermore
National Laboratory).

3.2 Why parallel programming?

High performance parallel computers have played crucial roles basically in all
research areas both in academia and industry. HPC becomes indispensable
if the problem at hand is very complex, expensive, or dangerous for example
in the case of weather forecasting, drug discovery, and airplane incidents
simulations respectively.

Today, real-world problems are massively large and complex and this
stems from the fact that for real-life problems, the number of particles in-
volved in computer simulations is very large and the simulation requires

9

https://hpc.llnl.gov/documentation/tutorials/introduction-parallel-computing-tutorial
https://hpc.llnl.gov/documentation/tutorials/introduction-parallel-computing-tutorial
https://hpc.llnl.gov/documentation/tutorials/introduction-parallel-computing-tutorial
https://hpc.llnl.gov/documentation/tutorials/introduction-parallel-computing-tutorial

a very long time (months or even years). Three examples are shown in
Fig. (29).

Figure 7: Three examples where parallel programming is highly required.

The first example on the left is weather forecasting. The simulation starts
by discretizing the space into the three-dimensional grid. Each point on the
grid stores the current atmospheric conditions (of the molecule of the air)
such as temperature, pressure, wind speed and direction, humidity, and so
on. The dynamic at each point is described by equations from physics and
fluid dynamics. Two factors make the problem of forecasting very complex.
On one hand, to increase the accuracy of the simulation, we need to increase
the number of grid points and this results in an astronomical number of
equations. On the other hand, because the evolution at each point depends on
the states of neighboring points, we end up with very complicated nonlinear
partial differential equations that require supercomputers to solve them.

The second example is the protein folding and protein-ligands banding
processes that are very useful for enzyme regulation and drug discovery in
general. For this system, both the number of constituents (amino acids) and
a number of microscopic configurations (folded states of the protein) is very
large which makes the use of massively parallel programming indispensable.

The last example is a simulation in physics or chemistry where in se-
quential programming the number of atoms or molecules is taken from tens
to hundreds but in a massively parallel simulation the number of particles
reaches hundreds of billions (for example in Monte Carlo or Molecular dy-
namics simulations).

10

3.3 Paralle Programming: Models and Languages

It is well known that for sequential programming, the von Neumann model
is the predominant programming model. however, in parallel programming,
there are many parallel models out there each associated with a different
hardware architecture. We briefly review here four different models (that
can be used in the HPC-Cluster EMIR): Shared Memory Programming, Dis-
tributed Memory Programming, GPU Programming, and finally Hybrid Pro-
gramming.

3.3.1 Shared Memory Programming

In the shared-memory architecture, all the CPU cores are connected to the
same piece of memory Fig (8) via a fast interconnection network called a
memory bus. This allows any processor to access any part of the memory in
parallel. For example, in a system with a quad-core processor and 4 GBytes
of RAM, each of the 4 CPU cores will be connected to the same 4 Gbytes of
RAM.
There are many programming models to program the shared-memory sys-
tems, the most used are:

• OpenMP which stands for Open Multi-Processing,

• PThreads which stands for POSIX Threads,

• Cilk, Cilk++ and OpenCilk,,

• Linda

• Split-C

OpenMP becomes the de facto standard of parallel programming for shared-
memory systems.

11

Figure 8: Shared memory architecture.

3.3.2 Distributed Memory Programming

The shared memory model is powerful and largely used but its main drawback
is that it is very difficult to have very large numbers of CPU cores in a single
shared-memory computer. In modern supercomputers, another highly used
architecture is the distributed memory architecture in which each processor
has its own private memory Fig. (10).

Figure 9: Distributed memory architecture.

Processors cannot access the memory of each other directly. But as shown
in Fig. (10) they are able to talk to each other via the interconnection network
(Memory Bus). All communication and synchronization between processors
happen via messages passing through this interconnection network. In an-
other word, if a processor needs to update the data stored in the memory of
another processor, then the former sends a message to the latter asking for
the data. As opposed to the shared memory model, the distributed memory

12

architecture allows to scale the supercomputers to a larger number of pro-
cessors. In addition, because of the use of local memory for each processor,
the memory access can achieve a lower access time. The main model for the
parallel processing of distributed memory systems is the Message Passing In-
terface (MPI) and it becomes the paradigm model for parallel programming
using message passing. The most popular message passing models are:

• MPI for C, C++ and Fortran,

• Akka exists for both Java and Scala,

• Actor,

• Occam,

• Fortran M.

3.3.3 GPU Programming

Modern GPU architecture Fig. (10) makes it suitable for parallel processing.
In modern supercomputers, GPU have become an extremely powerful tool
for high-performance computing applications. Today, GPU programming is
used in all industries such as gaming, medical imaging, image processing,
audio signal processing, aerospace, etc. It has also boosted the development
and applications of Artificial Intelligence in industry.
Different parallel programming languages have been developed to program
the GPU such as CUDA (available for Nvidia hardware only), OpenACC (for
Cray hardware only), and OpenCL (hardware independent). As Nvidia GPU
becomes the most popular and commonly used chipset (especially in HPC
clusters and workstations), Nvidia CUDA becomes the dominent language
for programming the GPU.

13

Figure 10: Comparison between the CPU and GPU architectures (Image
from Nvidia).

The most used programming languages for the GPU are:

• CUDA: Compute Unified Device Architecture,

• OpenCL: Open Computing Language,

• OpenACC: Open Accelerators,

• C++ AMP: C++ Accelerated Massive Parallelism,

• Halide,

• HIP: Heterogeneous-Computing Interface for Portability (for AMDGPU),

• SYCL: can be compiled and executed on different GPUs.

In addition to the programming languages, there are many parallel libraries
and APIs (such as OpenGL, DirectX, Hadoop, etc.) that facilitate the use
of parallel processing.

3.3.4 Hybrid Programming

Despite that both the CPU and the GPU are indispensable computing en-
gines, they both have advantages and disadvantages. The CPU on one hand
is flexible and can provide more speed for computations (performs sequen-
tial tasks quicker) compared to the GPU, but it cannot carry a heavy load.

14

https://developer.nvidia.com/blog/cuda-refresher-reviewing-the-origins-of-gpu-computing/

On the other hand, because the GPU consists of hundreds (or thousands)
of cores, it can accelerate the workloads and hence processes data several
orders of magnitude faster than a CPU. But the GPU cores are less pow-
erful than their CPU counterparts in terms of clock speed and it has less
memory. As a result, GPUs can struggle with processing tasks that are not
well-structured 1. Not to forget that the GPU is quite expensive and it con-
sumes a lot of power (it has its own power source). A novel approach to
leverage the resource for computation is to use hybrid or heterogeneous
programming. The latter refers to combining multiple hardware architectures
in one architecture. Hybrid programming (like OpenMP-MPI programming)
uses shared–distributed memory architecture. Heterogeneous programming
(sometimes also called hybrid programming) is designed for multi/many-core
systems such as CPU-GPU architecture. Examples of hybrid and heteroge-
neous programming are given below:

• MPI+OpenMP

• MPI+CUDA

• OpenMP+CUDA

• MPI+OpenMP+CUDA

• MPI+OpenCL

4 Presentation of the HPC Cluster Emir

In this guide, we will use the HPC Cluster Emir of the University of Mascara
as a showcase. The main component of the Cluster are shown in the following
figures.

1well-structured program is a program that is arranged in a logical order and is easy
to read, debug, and update.

15

HPC Cluster Voltage stabilizer

UPS Cooling system

4.1 HPC Custer Emir Hardware

The HPC Cluster Emir has been installed at the University of Mascara in
2015. It is manufactured by BULL, a leading company in the technology of
Supercomputers. The cluster has in total 35 nodes. One node is dedicated
to the administration and management of the cluster and it has a capac-
ity of 8x3000GB with two Intel Xeon processors and PYNY nVidia Quadro
K5000 Graphic card. One node is dedicated to the storage and it has a
capacity of 36000 GB (12x3000GB HDD). One node is dedicated to visu-
alization. It has a storage capacity of 8x3000GB HDD and a graphic card

16

of type PYNY Nvidia Quadro K5000, 4GB GDDR5, and 1536 CUDA cores
(see https://www.gpuzoo.com/GPU-NVIDIA/Quadro_K5000.html for more
specifications). The remaining 32 nodes are dedicated to computation.
One each one of the 35 nodes, there are two Intel Xeon E5-2620v2 CPUs
(processors). Each CPU has a RAM of 64GB and a frequency of 2.5-3.3GH.
So in total, the compute nodes have 640 cores.
The communication between you (the user) and the HPC cluster can be done
via Ethernet. The communication between all the nodes of the cluster is done
via the Infiniband interconnect with an extremely fast bandwidth (40GB/s).
The table below summarizes the resources of the HPC-Emir

Matériels Configuration

1 Management Node
Bullx R425-E3 : CPU 2 x E5-2670v2 10 cores 2.5 Ghz

RAM 64GB@1600MHz - HDD 8x3000GB

1 Storage Node
Bullx R423-E3 : CPU 2 x E5-2620v2 2.1Ghz
RAM 64GB@1600MHz - HDD 12 x 3000GB

1 Visualization Node
Bullx R425-E3 : CPU 2 x E5-2670v2 10 cores 2.5 Ghz

RAM 64GB@1600MHz - HDD 8x3000GB

32 Compute Nodes
Bullx R425-E3 : CPU 2 x E5-2670v2 10 cores 2.5 Ghz

RAM 64GB@1600MHz, 500GB HDD

The host names for the different nodes are:
emir0: The management node.
emir1: The storage (NFS) node.
emir10: The visualization node.
emir[11-42]: Compute nodes.

4.2 HPC Custer Emir Software

The Cluster Emir is a Linux-based HPC cluster running CentOS 7 (Community
enterprise Operating System) which is based on Red Hat Enterprise Linux
(RHEL) sources. The software installed on the cluster are summarized in
the table below.

17

https://www.gpuzoo.com/GPU-NVIDIA/Quadro_K5000.html

gcc/g++ C/C++ compilers Open Source
gfortran Fortran compiler Open Source

python3, python Python compiler Open Source
GO Go programming language Open Source

Singularity Containers Technology Open Source
gcj Java compiler Open Source

openmpi MPI compiler Open Source
openmp OpenMP compiler Open Source

Anaconda, Miniconda
Pandas, OpenCV
NumPy, SciPy

Matplotlib, TensorFlow
PyTorch, Keras

Pillow, Scikit-learn
mysqldb, tkinter

Development tools
for Machine Learning,
Artificial Intelligence,
Computer Vision

and IoT

Open Source

opencl OpenCL compiler Open Source
nvcc CUDA compiler Open Source
opengl OpenGL compiler Open Source

Octave
Computer Algebra
(Similar to Matlab)

Open Source

Quantum Espresso Ab-initio simulations Open Source
Wien2k Ab-initio simulations License available

Table 1: Software installed on HPC-Cluster Emir.

5 Accessing the HPC Cluster Emir

Access to the Cluster Emir is available via encrypted and secured connection
ssh. The ssh program allows the user to open a text console session on a
remote computer. When a user connects to a computer at University, the user
must enter their username and the appropriate password. This is done
from a shell or terminal prompt on a Linux or Mac OS system. On a windows
machine, the user can access the cluster using a graphical ssh program under
Windows, such as PuTTY (Cygwin or MKS can also be used).
From inside the University, you can access your account as follow:

18

5.1 On Linux

Connections to the Cluster via ssh can be made from a terminal. Once the
terminal window is open, the syntax of the commands is usually the same
on all Linux systems (Ubuntu, RedHat, Fedora, CentOS, Debian, SUSE,...).
On terminal type 2 (see Fig. (11))

ssh username@172.19.30.13

Figure 11: Typing username

then press Return (Enter) on the keyboard. These commands should
bring up another line (see Fig. (12)) asking you to type in your password
(note that nothing is shown on the screen when you type the password).

2Note that the IP address ”172.16.71.241” appearing in the figures is the one used
previously in the cluster. It is not working any more now. Instead, use the IP address:
172.19.30.13

19

Figure 12: Typing password

Enter your password, and press Return (see Fig. (12)). username must
be replaced by your account name. For example, my user name is bbakhti,
login to the cluster can be done as 3 (see Fig. (11)):

ssh bbakhti@172.19.30.13

You are now logged in on the HPC Cluster (see Fig. (13)), and can use any
of the Linux, module, or queue system commands described in this manual.

Figure 13: Login

3Check footnote in the previous page

20

5.2 On Windows

Windows does not come with an ssh program, but several free ssh programs
are available. The easiest to use, free ssh program is PuTTY. Here you need
to install putty on your windows computer. Depending on your windows ver-
sion, you can download Putty from https://www.chiark.greenend.org.

uk/~sgtatham/putty/latest.html (see Fig. (14)).

Figure 14: Download PuTTy.

The installation can be done following the steps below:
1- Double click on the downloaded file.
2- Click Next on the welcome screen (see Fig. (15)).

Figure 15: Double click on the downloaded file.

3. Click Next if you don’t need to modify the installation path (see
Fig. (16)). Click Change... to specify another path (but this is not neces-
sary).

21

https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html
https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html

Figure 16: Press Next.

4- Click Install(see Fig. (17)).

Figure 17: Press Install.

5. Upon completing the installation, the program shows a ’Setup com-
plete’ screen. Check/uncheck the View README file option if you want to
see the developer’s notes. Click Finish to exit the installer (see Fig. (18)).

22

Figure 18: Press Finish.

Putty is installed now on your PC. To connect to the Cluster with PuTTY,
first, double click on the PuTTY icon on the Windows desktop or Laptop or
search PuTTY in the search bar and press Enter (see Fig. (19)). This will
open the PuTTY Configuration window.

Figure 19: Open PuTTy.

23

In the PuTTY configuration window (see Fig. (20)), choose the ssh
for the connection type, keep the port 22 and type in the hostname or IP
address of the cluster.

Figure 20: Type IP address.

Windows may pop up a security warning message that requires you to
click on ”yes”, ”Allow”, or ”Run”, or ”Continue” in order to allow the
PuTTY software to run Fig. (21)). Click yes.

24

Figure 21: Press Yes.

The PuTTY terminal window will appear with the ”login as:” prompt
Fig. (22)). Enter your username, and press Return.

Figure 22: Type username.

Next, the ”Password:” prompt will appear Fig. (23)). Enter your pass-

25

word and press Return. Note that nothing is shown on the screen when you
type the password,

Figure 23: Type password.

Congratulation! you should be in the terminal console of your account
Fig. (24)).

Figure 24: You are login.

26

If you want to exit your account (log off the Cluster), simply type exit
and press Return.
For an advanced user, a much better and recommended way to ssh to the
HPC Cluster from a Windows PC/Desktop is to use MobaXterm. the
installation and use of mobaXterm are described in the appendix.

5.3 Transferring files between PC and Cluster

Files can be transferred between your PC on the Cluster using the scp com-
mand. To transfer the file to the cluster, open the terminal prompt on Linux
or PuTTy on Windows. Then you should navigate to the path where your
file is located. Suppose your file is a python file named fileExample.py (but
it can be a file with any extension such as c, cpp, doc, pdf,...). To transfer the
fileExample.py to a folder named myFolder in your cluster home directory,
use the following command

scp fileExample.py / username@172.16.71.241:./myFolder

Then press Return. The file should be transferred. An example is shown
in Fig. (25)

Figure 25: Copy file from PC to Cluster.

27

In this example; the file tensor.py will be transferred from the Desktop
to myFolder in the cluster home directory.
To move a folder named folderExample to the myFolder in the cluster use.

scp -r folderExample / username@172.16.71.241:./myFolder

and press Return.
Transfer of files (for example output file) from the Cluster to your computer
can be done as follow. Open a terminal prompt on your computer. Navigate
to the place where you want to move the file to. Suppose the file you want to
move is named output.txt and it exists in the myFolder folder in your home
directory in the cluster. use the following command to move the file to your
PC

scp usename@172.16.71.241:./myFolder/output.txt .

and press Return. Note the space between output.txt and the dot is manda-
tory. An example is shown in Fig. (26)

Figure 26: Copy file from Cluster to PC.

In this example; the file myOutput.txt will be transferred from the
myFolder folder in the cluster home directory to the Desktop of my PC:

5.4 Submitting Job to the Cluster

Executing a job on the HPC Cluster Emir will be done using the following
steps:

• Determine the resources necessary for the specific job (number of nodes,
number of CPUs, required time, GPU, amount of memory,...).

• Create a Batch job script.

28

• Submit the job to the scheduler.

• Check the job status.

• Retrieve job information and output.

All these steps will be performed using a specific software called SLURM.
Details on these operations will be given below and for more information
on Slurm, please check https://schedmd.com/ or https://hpc.llnl.gov/
training/tutorials#trainingmaterials.

5.4.1 What is Slurm

Slurm (Simple Linux Utility for Resource Management) is an open source,
fault-tolerant, and highly scalable cluster management software. It is the
most commonly used job scheduler for Linux-based HPC clusters and is the
software we use to run all jobs on the HPC Cluster Emir. Slurm performs
several important functions: it allows the user to allocate time and resources
on the compute node(s) to perform a job. It also allows the user to start
and monitor the status of the job as it runs on the worker nodes. Finally, it
queues and balances job submissions for all users on the cluster.

5.4.2 Determine resources for job

Choosing appropriate resources for your jobs is essential to ensuring your
jobs will be scheduled as quickly as possible while wasting as few resources
as possible. There are no recipes to follow when choosing the cluster resources
for your job. But generally, you will learn this with experience working with
the cluster.
The key resources you need to optimize for are:

• Time allocation

• Nodes and Cores allocation

• Memory-allocation

Time requirements are highly dependent on how many CPU cores your job
is using - using more cores may significantly decrease the amount of time the
job spends running.
In order to determine your CPU requirements, you should investigate if your

29

https://schedmd.com/
https://hpc.llnl.gov/training/tutorials#training materials
https://hpc.llnl.gov/training/tutorials#training materials

program/job supports parallel execution. If the program only supports se-
rial processing, then you can only use 1 CPU. If your job/program supports
multiple cores, you need to allocate multiple CPUs. At the moment, the
Maximum number of cores that you can allocate is 30 cores. For a GPU job,
you can only use the visualization node of the HPC-Emir Cluster.
For the memory allocation, submit your job sbatch by specifying very gen-
erous memory and time requirements to ensure that it runs to completion
and also using the −−mail−user= and −−mail−type=ALL parameters
to receive an email-report. The mail message will list the maximum memory
usage (maxvmem/MaxVMSize) as well as the wallclock time used by the
job.
Remember, the larger your request, the longer it will take for the resources to
become available and the time taken to queue is highly dependent on other
cluster jobs.

5.4.3 Create a Batch script for the job

I present here some slurm batch scripts samples that can be used as a tem-
plate for building your own Slurm submission scripts for use on HPC-Emir.
Please make sure you understand each #SBATCH directive before using the
script to submit your jobs. First, you need to create an empty batch script
(with .sh or .slurm extension). On both Linux (terminal) or Windows
(PuTTy console) you can use either the command nano or the command vi
as follow (see Fig .(27) for PuTTy on Windows):

nano batch example.sh

vi batch example.sh

Both commands bring a a similar empty file.

30

Figure 27: Create batch file.

After pressing enter you should get an empty file like the one displayed in
Fig .(28) (for Linux terminal, but you get exactly the same thing for PuTTy
console)

Figure 28: Empty batch file (on Linux).

31

Copy the following batch file into the empty terminal screen (see Fig .(29)
for both Windows putty and Linux terminal). If you have used vi editor to
create the batch file, then you need to press the letter ”i” to insert or modify
text.

#!/bin/bash

set name of the job

#SBATCH -job-name=mpi_program

The "all" partition is the default partition

#SBATCH --partition=all

set the number of nodes (2 in the present case)

#SBATCH --nodes=2

number of processes per node (processors cores)

#SBATCH --ntasks-per-node=20

Job memory request

#SBATCH --mem=1gb

set max wallclock time (D-hh:mm:ss)

#SBATCH --time=0-00:40:00

load the required modules

module load openmpi

Define the mail address for notifications

#SBATCH --mail-type=end

When to send mail notifications Options: BEGIN,END,FAIL,ALL

#SBATCH -mail-user=email@univ-mascara.dz

Redirect standard error

#SBATCH --error=mpi_program.err

Redirect standard output

#SBATCH --output=mpi_program.out

And finally run the job

srun ./mpi_program

32

Figure 29: Batch file on Windows (up) and Linux (bottom).

To exit and save the batch file in the nano editor, press Ctlr+X then
y then Return. To exit and save the batch file in the vi editor, press first
Esc in the keyboard, then type :wq, then press Return and you are done.

The batch file has many options. You can check all options by running
the command man batch in the cluster terminal. The most used commands
of the slurm batch file are:
−−job−name= or −J gives a name for the job.
−−partition or simply −p is used to specify the partition to which you
want to submit your job. For the Cluster Emir, we have only one partition
”all”.
−−ncpus-per-task= or −c is used to fix the required number of CPU.
−−nodes or simply −N is used to fix the required number of nodes.
−−ntasks−per−node= specify how many tasks will run on each allocated
node.

33

−−mem-per−cpu= fixes the minimum memory required per allocated
CPU in megabytes.
−−mem= used to fix the required memory per node.
−−gres=gpu: used to fix the number fo GPU.
−−ntasks or in short −n is used to fix the number of cores.
−−time= or −t is used to fix the time (in the format D−h:m:s).
−−output= or −o names the file in which to store the job output.
−−error= or −e specifies the file name in which to store job error messages.
−−mail−user= this is the mail address to contact the job owner (send no-
tifications).
−−mail−type= specifies when to notify a job owner: none, all, begin, end,
fail, requeue, array tasks.
−−input= specifies the file name from which the job read input data.
−−accounts= displays the job with specific accounts.

Here are some examples of SLURM batch scripts for running a job on
the HPC cluster Emir with MPI−C/C++, MPI−Fortran, MPI−Python,
OpenC, and CUDA:

MPI−C++ Slurm batch file

#!/bin/bash

#SBATCH -p all

#SBATCH -J MPIProgram

#SBATCH -o MPIProgram-%j.out

#SBATCH -e MPIProgram-%j.err

Run for a maximum time of 0 days, 12 hours, 00 mins, 00 secs

#SBATCH -t 0-12:00:00

#SBATCH --nodes=1

#SBATCH --ntasks-per-node=20

#SBATCH --mem-per-cpu=4000

#SBATCH --mail-type=ALL

#SBATCH --mail-user=<your email>

list modules loaded by default.

module list

load module gcc openmpi

34

prints current working directory

pwd

prints the date and time

date

run the MPI job

mpirun my_program.cpp

MPI−Fortran Slurm batch file

#!/bin/bash

#SBATCH -p all

#SBATCH -J MPIProgram

#SBATCH -o MPIProgram-%j.out

#SBATCH -e MPIProgram-%j.err

#SBATCH -t 0-12:00:00

#SBATCH --nodes=1

#SBATCH --ntasks-per-node=20

#SBATCH --mem-per-cpu=4000

#SBATCH --mail-type=ALL

#SBATCH --mail-user=<your_email>

list modules loaded by default(GNU8 compilers and OpenMPI3 MPI libraries)

module list

swap the MPI library from the default openmpi3 to mpich.

module swap openmpi3 mpich

module list

pwd

date

mpirun my_program.f

MPI−Python Slurm batch file

#!/bin/bash

#SBATCH -p all

#SBATCH -J MPIProgram

#SBATCH -o MPIProgram-%j.out

#SBATCH -e MPIProgram-%j.err

#SBATCH -t 0-12:00:00

35

#SBATCH --nodes=1

#SBATCH --ntasks-per-node=20

#SBATCH --mem-per-cpu=4000

#SBATCH --mail-type=ALL

#SBATCH --mail-user=<your_email>

module list

pwd

date

mpirun python my_program.py

CUDA Slurm batch file
A SLURM job script to submit a CUDA application on a host with a Nvidia
GPU could be done as follow:

#!/bin/bash

#SBATCH --job-name=gpuProgram

#SBATCH --account=hpc_emir_account

#SBATCH --ntasks=1

#SBATCH --cpus-per-task=10 # CPU cores/threads

#SBATCH --time=12:00:00 # format HH:MM:SS

#SBATCH --mem-per-cpu=4000

#SBATCH --chdir=/work/<hpcDirectory>/ # work directory

#SBATCH --partition=all

#SBATCH --gres=gpu:1 # Number of GPUs (per node)

#SBATCH --mail-user=username@univ-mascara.dz

#SBATCH --mail-type=BEGIN,END,FAIL

#SBATCH --output=gpuProgram_%j.out

#SBATCH --error=gpuProgram_%j.err

#load the CUDA module

module load cuda-10-0/10.0

echo "== Start memory test ============"

srun ./memtestG80

run the job

srun ./my_cuda_program

36

The option ”#SBATCH −−gres=gpu:1” lets SLURM allocate one GPU for
the job.
OpenCL Slurm batch file
Because there is an Nvidia GPU installed on the Cluster, you can use the
Nvidia OpenCL implementation that supports only Nvidia GPUs. It can be
used as follows:

#!/bin/sh

#SBATCH -J gpuProgram

#SBATCH -p all

#SBATCH --account=hpc_emir_account

#SBATCH --t=00:15:00

#SBATCH -N 1

#SBATCH --gres=gpu:1

#SBATCH --mail-user=username@univ-mascara.dz

#SBATCH --mail-type=BEGIN,END,FAIL

#SBATCH -o gpuProgram_%j.out

#SBATCH -e gpuProgram_%j.err

module load opencl-nvidia/11.2

run the job

./opencl-program-nvidia

Note that if needed, you can specify the node with the installed GPU as:

#SBATCH -C GK104

where GK104 is the GPU installed on the Nvidia Quadro K5000. Before
showing how to submit a job, let talk about the concept of Modules.

5.4.4 Modules: Setting up your environment

The module is a concept used in HPC clusters to specify the different versions
of software and compilers. This concept is extremely important because on
an HPC cluster a large number of software packages are installed and often
there will be several versions provided for a package where it will be necessary
for a user to choose between them. For example in the case of python one
can load the version python2.7 or the version python3. Equally, two different

37

packages may clash with each other: for example, the commands for Intel
MPI and Open MPI would overlap if simultaneously installed. One always
has to choose the compiler that could improve the performance of his job or
the one that can make things easier or run faster. So in the batch file, we
need to set up the environment by loading all the required modules. When
the package is no longer needed, users can unload the module from their
environment. To get a list of available modules, use one of the following (in
the cluster terminal):

module avail

To load a module into your environment to start using an application, use
one of the following,

module load module name/version

For example to load Matlab (it is not available at the moment in the Cluster
Emir) use,

module load matlab

In most cases, you need to specify the version of the software, for exam-
ple,

module load matlab/R2016a

To get a list of currently loaded modules, use:

module list

To unload a specific module, use:

module unload module name/version

For example, to unload Matlab use:

module unload matlab

38

Modules can have multiple versions of the software, and you can see the
versions either with module avail or by doing (example for CUDA):

module apropos cuda

If you want to unload the old module and load the new one, use:

module switch old module name new module name

To get information about the modules, use:

module whatis module name

and to get a short description of the module, use:

module show/display module name

An important point to note here is that some software packages depend
on other software. In this case, loading module for the package may load
modules for the other software as well. This process is called dependency.
Examples of modules are given in the following table

Software Modules
Intel compilers intel
GNU compilers gcc
PGI compilers pgi64
Python compiler python/2.7.12, python/3.6.0
MPI compiler mpicc, mpic++, openmpi/2.1.2, openmpi
Matlab matlab, matlab/R2016a
Mathematica mathematica/11.3.0
Gnuplot gnuplot/5.0.6
Nvidia CUDA Comiler CUDA/10.0.130, CUDA/10.2.89-GCC-8.3.0
Wien2K compiler wien2k
Octave octave/3.8.1

To load compilers (for example Intel compilers), use:

39

module load intel

this will load intel compilers such as icc (c compiler), icpc (c++ compiler)
and ifort (fortran compiler).
To load the GNU compilers such as gcc (c compiler), g++ (c++ compiler)
and gfortran (Fortran compiler), use:

module load gcc

To load CUDA 11.1 (for GPU programming) use:

module load CUDA/11.1

You can load CUDA combined with other compilers. For example, to load
CUDA 10.2 plus the GCC 8.3 compiler, use:

module load CUDA/10.2.89-GCC-8.3.0

To load CUDA 10.1 plus the GCC 8.x compiler, OpenMPI, OpenBLAS,
SCALAPACK and FFTW use:

module load fosscuda/2019b # includes GCC 8.3
module load fosscuda/2019a # includes GCC 8.2

A list of different compilers is given in the following table:
Compiler C++ C Fortran 77 Fortran 90 MPI
GNU g++ gcc gfortran gfortran none
GNU mpic++ mpicc mpifort, mpif77 mpifort, mpif90 OpenMPI
GNU Intel MPI
Intel icc icc ifort ifort none
Intel mpiicc mpiicc mpiifort mpiifort Intel MPI
Intel mpic++ mpicc mpifort, mpif77 mpifort, mpif90 OpenMPI
PGA pgc++ pgcc pgf77 pgf90 none
PGA mpic++ mpicc mpifort mpifort OpenMPI

40

5.4.5 Submit and check the status of a job

There are 2 commands for job allocation: sbatch is used for batch jobs and
salloc is used to allocate resources for interactive jobs. The format of these
commands:

• sbatch [options] jobscript [args...]

• salloc [options] [command [command args]]

If the batch file is named ”my batch.sh” or ”my batch.slurm”, then you sub-
mit your job using

sbatch my batch.sh
or
sbatch my batch.slurm

This command will automatically queue your job using SLURM and pro-
duce a job ID number (shown below). You can check the status of your job
at any time with the squeue -j <JOB ID> command.

squeue -j job ID

You can also stop your job at any time with the scancel command.

scancel job ID

Other useful commands to check the job status are summarized in the fol-
lowing table

41

List all current jobs for a user squeue −u username
List all running jobs for a user squeue −u username −t RUNNING
List all pending jobs for a user squeue −u username −t PENDING
List all current jobs in the general
partition for a user

squeue −u username −p general

List detailed information for a job
(useful for troubleshooting)

scontrol show jobid −dd jobid

To cancel one job scancel jobid
To cancel all the jobs for a user scancel −u username
To cancel all the pending jobs for a user scancel −t PENDING −u username
To cancel one or more jobs by name scancel –name JobName
To pause a particular job scontrol hold jobid
To resume a particular job scontrol resume jobid
To requeue (cancel and rerun) a particular job scontrol requeue jobid

When running the squeue command, you get information (in columns)
displaying the Job IDs, names of the job, STs, the users, and the nodes. The
ST column gives the state of the job, with the following codes:

• R for Running

• PD for PenDing

• TO for TimedOut

• PR for PReempted

• S for Suspended

• CD for CompleteD

• CA for CAncelled

• F for FAILED

• NF for jobs terminated due to Node Failure

42

5.4.6 Retrieve output

As stated before, different commands can be used to retrieve the results and
output of the programs from the HPC cluster. The most used one is the scp
command. The latter can be used as follow

scp usename@172.16.71.241:./myFolder/output.txt .

and transfer a directory or a folder use

scp -r usename@172.16.71.241:./myFolder/output.txt .

I recall that the space between output.txt and the dot is mandatory. An-
other command that can be used is the sftp.

5.4.7 Slurm most used Commands

• salloc to request interactive jobs/allocations

• sattach to attach standard input, output, and error plus signal capa-
bilities to a currently running job or job step

• sbatch to submit a batch script (which can be a bash, Perl, or Python
script)

• scancel to cancel a pending or running job or job step

• sbcast to transfer a file to all nodes allocated for a job

• sgather to transfer a file from all allocated nodes to the currently
active job. This command can be used only inside a job script

• scontrol provides also some functionality for the users to manage jobs
or queries and get some information about the system configuration

• sinfo to retrieve information about the partitions, reservations, and
node states

• smap graphically shows the state of the partitions and nodes using a
curses interface.

• sprio can be used to query job priorities

43

• squeue to query the list of pending and running jobs

• srun to initiate job steps mainly within a job or start interactive jobs.
A job can contain multiple job steps executing sequentially or in parallel
on independent or shared nodes within the job’s node allocation

• sshare to retrieve fair-share information for each user

• sstat to query status information about a running job

• sview is a graphical user interface to get state information for jobs,
partitions, and nodes

• sacct to retrieve accounting information about jobs and job steps in
Slurm’s database

• sacctmgr allows also the users to query some information about their
accounts and other accounting information in Slurm’s database.

6 A short introduction to Linux command

In this section, we present the list of the most used basic Linux commands:

sudo: Short for (short for SuperUser Do), the sudo command is used when
you want to perform tasks that require administrative or root permissions.
pwd: the pwd (short for present working directory) command is used to find
out the path of the current working directory (folder) you’re in.
cd: the cd (short for change directory) command is used to navigate through
the Linux files and directories. There are some shortcuts to help you navigate
quickly:

• cd .. (with two dots) to move one directory up

• cd to go straight to the home folder

• cd- (with a hyphen) to move to your previous directory

• cd or cd ∼ to navigate to your home directory

• cd / to navigate into the root directory

44

ls: the ls command is used to view the contents of a directory

• ls -R will list all the files in the sub-directories as well

• ls -a will show the hidden files

• ls -al will list the files and directories with detailed information like
permissions, size, owner, etc.

cp: the cp command is used to copy files from the current directory to a
different directory.
mv: the mv command is used to move files, although it can also be used to
rename files.
mkdir: the mkdir command is used to make (create) a new directory.
rmdir: the command rmdir is used to delete a directory.
rm: the rm command is used to delete files. If you want to delete the
directory (as an alternative to rmdir) use rm -r.
cat: cat (short for concatenate) is one of the most frequently used commands
in Linux. It is used to list the contents of a file on the standard output
(sdout). As an example:
cat file.txt
will display the content of the text file file.txt in the terminal. You can use
cat also as:

• cat > filename: creates a new file

• cat filename1 filename2 > filename3: joins two files (1 and 2) and
stores the output of them in a new file (3)

touch: the touch command is used to create a blank new file through the
Linux command line.
clear: the clear command is used to clear the Linux window terminal.
grep: the grep command is used to search through all the text in a given
file.
kill: used to terminate manually a process.
ping is used to check your connectivity status to a server.
top: the top command will display a list of running processes and how much
CPU each process uses.
zip, unzip: these commands are used to compress or decompress a file.

45

hostname: used to display the hostname of your host/network. Adding a
−i to the end will display the IP address of your network.
passwd: this command is used to change password.

7 References

Here is a list of some books to learn parallel programming. Please, check
also youtube for some nice lectures on all the programming languages.
[1]− D. B. Kirk, W-m. W. Hwu, Programming Massively Parallel Proces-
sors, Morgan Kaufmann; 3rd ed. (2016).
[2]−J. Sanders, E. Kandrot, CUDA by Example: An Introduction to General-
Purpose GPU Programming, Addison-Wesley Professional; 1st ed (2010); 2nd
ed. (2017).
[3]−G. Ruetsch, M. Fatica, CUDA Fortran for Scientists and Engineers,
Morgan Kaufmann; 1st ed. (2013).
[4]−D. R. Kaeli, P. Mistry, D. Schaa, D. P. Zhang, Heterogeneous Computing
with OpenCL 2.0, Morgan Kaufmann; 3rd ed. (2015).
[5]−M. Scarpino, OpenCL in Action: How to accelerate graphics and com-
putation, Manning; 1st ed. (2011).
[6]−A. Munshi, OpenCL Programming Guide, Addison-Wesley Professional;
1st ed. (2011).
[7]− Parallel Programming with MPI, Morgan Kaufmann (1996).
[8]−G. Barlas, Multicore and GPU Programming: An Integrated Approach,
Morgan Kaufmann Publishers; 2nd ed. (2022).
[9]−M. J. Quinn, Parallel Programming in C with MPI and OpenMP ; McGraw-
Hill Education (2008).

Appendices

Appendix A MobaXterm

Putty is easy and works fine but for an advanced user, a much better and
recommended way to ssh to the HPC Cluster from a Windows machine is to

46

usemobaXterm. MobaXterm offers support for a lot of protocols, including
SSH, VNC, SFTP, FTP, and it has a tabbed interface for easy access to all of
the sessions. It is incredibly easy to use and can perform more advanced op-
erations than PuTTY. It also integrates a full set of Unix-based commands.
First, you need to install MobaXterm. The latter can be downloaded from
https://mobaxterm.mobatek.net/download-home-edition.html. Make
sure to select the Installer edition rather than the Portable edition as shown
in Fig. (30). You can put the downloaded file anywhere in your computer.

Figure 30: Click on MobaXterm Home Edition

Unzip the downloaded zip file, and then double-click on the MobaXterm
installer msi file to begin the installation Fig. (31).

47

https://mobaxterm.mobatek.net/download-home-edition.html

Figure 31: Double click on the msi file

Accept the terms in the licence agreement, then click next as in Fig. (32)

Figure 32: Double click on the msi file

Click next to confirm the installation folder. By default it isC:\program
files x86\Mobatex\MobaXterm\ (see Fig. (33))

48

Figure 33: Press next

Sometimes, a window is popping up asking for permission, click yes, then
click Install, Fig. (34)

Figure 34: Press Yes then Install

and finally, click Finish to finish the installation, Fig. (35))

49

Figure 35: Press Finish

MobaXterm is installed now on your machine. To connect to the Cluster
with MobaXterm, Search Mobaxterm in the search bar, and press Enter (see
Fig. (37))

Figure 36: Open MobaXterm from Windows start menu

and then press Start local terminal, Fig. (36))

50

Figure 37: Open MobaXterm from Windows start menu

This will open the MobaXterm Configuration console Fig. (37)

Figure 38: Enter username and password

Now, login to the cluster using the same ssh command, Fig. (38).

51

Appendix B Singularity Containers

To run in an excellent way the applications development, technology to-
day massively uses virtual machines (VM). These machines run applications
within a guest operating system, which uses virtual hardware emulated by
the host operating system of the real machine. This technique of isolation be-
tween guest and host is excellent but comes at a high price by emulating vir-
tual hardware and running a full guest operating system. Containers can be
seen as a lighter variant of VM. By exploiting more directly the lower layers of
the host (kernel) system, containers provide almost as strong isolation as vir-
tual machines, but with much higher performance. Singularity and similarly
Docker are containers technologies that allow users to create and fully control
their environment. However, docker is not suitable for HPC applications due
to security issues. Unlike the VM which requires a complete copy of the op-
erating system (OS), singularity and docker containers only require the user
space of the OS and the kernel space of the OS will be shared with the host
OS. With singularity, you can create a container (one or many) and install all
workflows, software, and libraries you need into that container. In addition,
you can upload the container from the singularity and docker hub and access
it from everywhere. Singularity is available on the compute nodes on the
HPC-Cluster Emir and users can use SBATCH or an interactive session in
SLURM to access it. To use singularity, you need to install it on your com-
puter. There are multiple ways to install singularity. A detailed description
of the installation procedure can be found on the singularity main documen-
tation https://sylabs.io/guides/3.0/user-guide/installation.html.
Before you can use the singularity command on the system, you may need
to load the singularity module using the command:

module load singularity

To get help with the singularity commands use

singularity −−help

To use any software (ubuntu, tesnorflow, mpi, opencv, ..), you need first
to pull an image of the software. For example, to pull tensorflow from docker
Hub use

52

https://sylabs.io/guides/3.0/user-guide/installation.html

singularity pull tensorflow.sif docker://tensorflow/tensorflow:latest

To pull the Ubuntu:18.04 container from Docker Hub use

singularity pull docker://ubuntu:18.04

If the version of the software is not specified in the command, then sin-
gularity will pull the latest version.
The next step is to push the image using the push command. For example
for ubuntu use

singularity push docker://ubuntu:18.04

you are able now to use the Ubuntu container. To use octave:5.2.0 for exam-
ple, you need first to pull the image using

singularity pull library://siko1056/default/gnu octave:5.2.0

Then run the image using

singularity run gnu octave 5.2.0.sif

To run the Octave in the graphical user interface (GUI) mode, use

singularity run gnu octave 5.2.0.sif −−gui

To use the command line interface (CLI), run:

singularity exec gnu octave 5.2.0.sif octave-cli

Here are some basic commands of singularity and more detail on how to
use these commands for specific applications can be found easily on the web.
singularity run: run the singularity image or the pre-defined script inside
the container.
singularity exec: execute a command inside the container.
singularity shell: provide you with a shell within the container.
exit: used to exit the shell command line.
singularity create: used to create your own image.

53

sudo singularity build: used to build a container.
singularity import: import images from docker.
It is also possible to use Singularity images within a non-interactive batch
script. All previous commands can be written within the batch script and
then run the latter using the sbatch command. Below is an example of
batch-job submission script using the hello-world.simg to print out informa-
tion about the native OS of the image. You can use the same command to
submit this job

sbatch singularity.sbatch

54

	Introduction
	What is an HPC Cluster?
	Cluster architecture
	Cluster nodes
	Compute power
	Fast Interconnect Network
	External infrastructures
	Cooling systems
	UPS Sysetms

	A brief overview of parallel programming
	What is parallel programming?
	Why parallel programming?
	Paralle Programming: Models and Languages
	Shared Memory Programming
	Distributed Memory Programming
	GPU Programming
	Hybrid Programming

	Presentation of the HPC Cluster Emir
	HPC Custer Emir Hardware
	HPC Custer Emir Software

	Accessing the HPC Cluster Emir
	On Linux
	On Windows
	Transferring files between PC and Cluster
	Submitting Job to the Cluster
	What is Slurm
	Determine resources for job
	Create a Batch script for the job
	Modules: Setting up your environment
	Submit and check the status of a job
	Retrieve output
	Slurm most used Commands

	A short introduction to Linux command
	References
	Appendices
	Appendix MobaXterm
	Appendix Singularity Containers

